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Abstract

Camera systems with automated zoom lenses are inherently more useful than those with
�xed-parameter lenses. Variable-parameter lenses enable us to produce better images by
matching the camera's sensing characteristics to the conditions in a scene. They also allow
us to make measurements by noting how the scene's image changes as the parameters are
varied. The reason variable-parameter lenses are not more commonly used in machine vision
is that they are di�cult to model for continuous ranges of lens settings.

We show in this thesis that traditional modeling approaches cannot capture the complex
relationships between control parameters and imaging processes. Furthermore, we demon-
strate that the assumption of idealized behavior in traditional models can lead to signi�cant
performance problems in color imaging and focus ranging. By using more complex models
and control strategies we were able to reduce or eliminate these performance problems.

The principal contribution of our research is a methodology for empirically producing ac-
curate camera models for systems with variable-parameter lenses. We also developed a
comprehensive taxonomy for the property of \image center." To demonstrate the e�ective-
ness of our methodology we applied it to produce an \adjustable," perspective-projection
camera model based on Tsai's �xed camera model. We calibrated and tested our model
on two di�erent automated camera systems. In both cases the calibrated model operated
across continuous ranges of focus and zoom with an average error of less than 0.14 pixels
between the predicted and the measured positions of features in the image plane. We also
calibrated and tested our model on one automated camera system across a continuous range
of aperture and achieved similar results.
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Chapter 1

Introduction

The goal of machine vision is to understand the visible world by inferring 3D properties from
2D images. Making an inference requires models describing how a camera and its lens form
images. Adjustable lenses o�er far greater capability and 
exibility than �xed-parameter
lenses, however, most machine-vision systems have been limited to cameras with �xed lenses
because of the di�culty of modeling cameras with adjustable lenses.

This thesis analyzes the issues involved and develops a methodology for empirically con-
structing camera models for adjustable lenses.

1.1 Why use adjustable lenses?

Consider the complex natural scene shown in Figure 1.1. This scene contains considerable
variations in light intensity, spatial detail, and physical distance. In the real world the range
of conditions that a camera system may need to image under, be it radiometric sensitivity,
spatial resolution, or focused distance, can often exceed the capabilities of a camera with
a �xed-parameter lens. To adapt to the conditions at hand camera systems require lenses
whose imaging parameters can be changed under computer control. Variable-parameter
lenses can also be used to determine properties of a scene (e.g. range) by noting how the
scene's image changes as the camera's image-formation process is changed.

Whether for adaptation or measurement, to e�ectively use adjustable lenses we need to have
models of the camera's image-formation process that work across ranges of lens settings.

1.2 Physical versus abstract operating spaces

In machine vision we need to know aspects of a camera's image-formation process that range
from simple properties, such as magni�cation and focused distance, to more complex image
properties, such as perspective projection and image defocus. In order to have computa-

1
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Figure 1.1: Example of a complex natural scene

tionally e�cient, closed-form equations for the more complex properties we use models that
are based on simpli�cations or abstractions of the lens's true image-formation process. The
two most common abstract models are the pinhole camera model and the thin-lens camera
model, used respectively to explain perspective projection and image defocus.

In the basic pinhole camera model, illustrated in Fig. 1.2, the 3D coordinates of a point
P (xc; yc; zc) are related to the 2D coordinates of its image P 0(Xu; Yu) by the equations

Xu = f
xc

zc
;

Yu = f
yc

zc

where f is the e�ective focal length of the pinhole camera model.

In the thin-lens camera model, illustrated in Fig. 1.3, the position of a point P in front of
the lens is related to the position of the point's focused image P 0 behind the lens by the
equation

1

s
+

1

s0
=

1

f

where f is the focal length of the thin-lens model, s is the object to lens separation and s0

in the lens to focused image plane separation.

For �xed lenses the set of abstract model parameters (e.g. f , s, and s0) consists of constants.
For adjustable lenses the parameters vary with di�erent lens settings. The range of the
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Figure 1.3: Basic thin-lens image-formation model
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abstract model parameters de�nes an abstract operating space for the camera system. Un-
fortunately we cannot directly control the values of the abstract camera model parameters.
Instead we control the camera's physical con�guration using actuators, such as focus, zoom,
and aperture motors. The range of settings for these actuators de�nes a physical operating

space for the camera system. In machine-vision tasks the interpretation of image data or
the planning of a sensing strategy (i.e. the reasoning) is typically carried out in the abstract
operating space of the camera system using the simpli�ed model of the image-formation
process. However, the actual implementation of the task must be carried out in the camera's
physical operating space. Calibrated camera models provide the bridge between the physical
and abstract operating spaces of the camera system.

1.3 The modeling and calibration problem

In camera systems with �xed-parameter lenses the camera's image-formation process is �xed.
All we need to do to calibrate a camera model is take measurements of the camera system
and estimate the values of the constant terms in the model's formulation.

For cameras with automated lenses the image-formation process varies with the lens's ac-
tuators, and thus many model terms are functions of the actuator settings. So, instead of
calibrating constants we have to formulate and calibrate functions that describe the rela-
tionships between model terms and actuator settings. This is di�cult for several reasons:

1. Abstract models (e.g. the pinhole projection model or the thin-lens defocus model) are
too far removed from the real image-formation process to provide very useful insights
into how the actuator settings are related to the parameters of the �nal image. They
cannot, for example, explain how geometric lens distortion varies with lens settings.

2. The relationship between the lens's optical con�guration and the actuator settings is a
design choice made by the manufacturer and typically unknown to the user. Moreover,
the relationship is mechanical and exhibits complex phenomena, such as hysteresis and
discontinuity, that are di�cult to model and calibrate.

3. The dimensionality of the required calibration data and the wide range of imaging
conditions over which it must be taken makes data acquisition for variable-parameter
lenses much more complex than for �xed-parameter lenses.

4. To develop complex adjustable camera models (e.g. for perspective projection) func-
tional relationships must be jointly calibrated across its full range of lens settings.
The number of parameters and the volume of data required can make this problem
computationally prohibitive.



1.4. REVIEW OF RELATED WORK 5

1.4 Review of related work

While camera and lens technology has improved signi�cantly in the 25 years since variable-
parameter lenses were �rst developed for machine-vision tasks, the approaches used to model
them have changed little. Much of the previous work on building predictive models for
variable-parameter camera systems centered on �nding ways to use the parameters in the
lens's abstract operating space for accommodation or for measurement. In this section we
concentrate on previous e�orts to solve the\calibration problem" by relating abstract model
parameters to the physical control settings of the lens.

Horn's focusing work [23] in 1968 on MIT's mac system was one of the �rst uses of computer-
controlled cameras in machine vision. The mac system featured computer-controlled focus
and aperture. His objective was to automatically focus a lens by servoing the focus actuator
until the camera's image sharpness peaked. A predictive model relating the focused distance
of the lens to the actuator settings was proposed but not actually developed.

In the early 70s Sobel and Tenenbaum used computer-controlled cameras in their work at
Stanford's AI laboratory. The Stanford system consisted of a camera with four �xed-focal-
length lenses and a color-�lter wheel mounted on a pan-tilt mechanism. The camera's focus,
aperture, the choice of lens and color �lter, the pan and tilt, and the camera's gain and
digitization parameters were all under computer control.

Sobel's objective was to design a 3D to 2D perspective-projection camera model for acquiring
and centering objects in a scene (viewpoint planning) [44][45]. His model of perspective pro-
jection was based on a simple pinhole camera with no distortion correction. The relatively
low precision of the hardware enabled Sobel to use simple zero and �rst-order polynomi-
als to capture the basic relationships between the actuator settings and the camera model
parameters. A total of 16 coe�cients had to be estimated for each of the four lenses.

The objective of Tenenbaum's work was auto-focusing and auto-irising accommodation for
edge tracking[51]. While Tenenbaum used a thin lens to explain defocus in his auto-focus
work, he did not develop a model to relate the focused distance of the lens to the actual
actuator settings of the camera system.

In the early 80s Bracho, Schlag, et al. [10][41] developed the popeye system at Carnegie
Mellon as a test-bed for machine-vision research in visual inspection, object classi�cation, and
interactive control tasks. The system featured an automated lens with continuously variable
focus, zoom, iris, as well as computer-controlled camera pan and tilt. Two empirical models
relating imaging parameters to actuator settings were developed for the system. The �rst
model related the camera's focused distance to the focus-motor setting, the second related
the camera's angular �eld-of-view to the zoom-motor setting. In both cases the models were
implemented with sparse lookup tables and interpolation. Second-order lens behaviors, such
as changes in focused distance with zooming and changes in the �eld-of-view with focusing,
were not modeled.

One of the �rst serious attempts to model and calibrate the relationships between imaging
parameters and control motors was made by Krotkov at the University of Pennsylvania's
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GRASP laboratory in the mid 80s [27]. Krotkov's objective was active exploratory sensing
of spatial layout using focus ranging and stereopsis. The agile stereo system he developed
featured two cameras with continuously variable focus, zoom, and aperture. Both cameras
were mounted on a platform that allowed them to pan, tilt, and verge.

To model focused distance as a function of the focus motor setting, Krotkov used a thick-
lens model and assumed that the focus-motor position was linearly related to the distance
between the lens's rear nodal point and the image plane (parameter s0 for the thin lens in
Figure 1.3). Coe�cients for the model were estimated from 30 measurements of focused
distance and focus-motor position. The model was calibrated at a single focal length. While
Krotkov noted that the image centers actually move as the focus and zoom of the lens
are varied, he used a �xed value for image center in his stereo system. A value for image
center was calculated for each lens by varying the zoom motor and calculating the focus of
expansion. A simple model relating aperture diameter to the aperture motor was presented,
but the model was not calibrated. While he measured relative magni�cation as a function of
zoom, Krotkov did not build a model relating the magni�cation to the zoom-motor setting.

A system similar to Krotkov's was developed at the University of Illinois at Urbana-Champaign
by Abbott [1] in the late 80s. The objective of Abbott's system was shape recovery for tex-
tured surfaces by dynamic integration of focus, camera vergence, and stereo cues. Abbott's
system also featured two cameras with continuously variable focus, zoom, and aperture.
Both cameras were mounted on a platform that allowed them to pan, tilt, and verge.

Abbott built three models relating image parameters to the lens-control parameters. The
�rst modeled focused distance as a function of focus-motor settings. The formulation of this
model was based on the assumption that the focus motor was linearly related to the lens-to-
image-plane distance in a thin lens (parameter s0 in Figure 1.3). The model was calibrated
at one �xed zoom position. Abbott's second model used relative image magni�cation as
a function of zoom motor. A general, second-order polynomial was used for the model
formulation. The model was calibrated at one �xed focus position. The third model built
by Abbott modeled relative magni�cation as a function of focus-motor position. Again
a general, second-order polynomial was used for the model formulation. The model was
calibrated at one �xed zoom position. Like Krotkov, Abbott assumed �xed image centers
for his camera lenses. Calibration for image center was accomplished by measuring the focus
of expansion with zoom.

One of the �rst researchers to make extensive use of variable-parameter camera models
for viewpoint planning was Tarabanis [48][49]. Developed at IBM's T.J. Watson Research
Center, Tarabanis' system featured a single camera with variable focus, zoom, and aperture.
The position and orientation of the camera were also under computer control. The objective
of Tarabanis' work was to determine the position, orientation, and lens settings for a camera
such that objects in a scene were resolvable to a given speci�cation, in focus, within the
�eld-of-view of the camera, and not occluded.

Tarabanis calibrated the relationships between the focus and zoom motors and the following
�ve image parameters: e�ective focal length; distance from the back principal point of the
lens to the sensor plane; diameter of the lens entrance pupil; location of the entrance pupil
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center; and location of the lens's front principal point. The pupil diameter model was also
a function of the aperture motor. The relationships were stored in sparse look-up tables
and interpolation used to calculate values for intermediate lens settings. To calibrate the
e�ective focal length and the location of the front and back principal points, the lens was
removed from the camera and placed in a special, optical-bench setup.

One of the more recent systems built for variable-parameter-camera research was the sparcs
system at SUNY, Stony Brook. This system featured computer-controlled focus and manu-
ally adjusted zoom and aperture. The primary objective of the sparcs system was auto-focus
and shape-from-focus research. Surya and Subbarao [46] noted that the relationship between
the inverse of the focused distance and the focus-motor setting is \almost linear." This rela-
tionship was subsequently modeled using a �rst-order polynomial. The model was calibrated
for one zoom position.

Wiley[55] at the University of Illinois, Urbana-Champaign, was among the �rst to present re-
sults for calibrating a complex model of perspective projection for a variable-parameter lens.
He calibrated a 17-parameter photogrammetric camera model for 14 separate focal-length
settings on a manually adjusted zoom lens. Plots of the terms of the camera model versus
the focal length (i.e. zoom) marked on the lens body showed a high degree of regularity,
and Wiley concluded that they might potentially be modeled as �rst- and second-degree
polynomial functions of the focal-length setting. No models were formulated or calibrated
though.

Lavest et al. [29] calibrated a simple perspective-projection camera model for 11 zoom
positions. The objective for the work was 3D reconstruction from zooming. Experimental
results were presented for the reconstruction of three objects. No parametric models relating
the lens's zoom to the perspective-projection camera model's terms were presented, and we
assume that the reconstruction of the objects was performed using the tabulated model
parameters from the 11 calibrated zoom positions. To determine image center Lavest used
the focus-of-expansion technique presented in [30]. Measurements of their system showed
little variation in the position of image center, therefore it was modeled as a constant in
their perspective-projection camera model. This model did not include terms for geometric
distortion.

In work very similar to Lavest's, Rodin[40] used another simple perspective-projection cam-
era model to perform 3D reconstruction from zooming. Rodin calibrated his camera model
for four (apparently manually set) zoom positions. Experimental results were presented for
the reconstruction of several objects. We assume Rodin, like Lavest, reconstructed objects
by using the tabulated model parameters from the four calibrated zoom positions. In the
perspective projection camera model used by Rodin, the image center was calibrated at each
zoom position, but there was no explicit modeling of lens distortion. Both Lavest and Rodin
comment that the low accuracy of their results may have been due in part to unmodeled
lens distortion e�ects.

Pahlavan's work [37] with the KTH-head at Stockholm University was one of the more
recent e�orts to build predictive models for more than one lens parameter. The KTH-head
was developed to study active vision from a biological perspective. It featured a pair of
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cameras with automated zoom lenses mounted in a highly mobile camera jig. Among other
motions the jig allowed the cameras to be independently panned and tilted. Normally as the
parameters of a zoom lens are varied the optical center (the center of perspective projection)
for the lens moves back and forth along the optical axis. In the KTH-head a translational
stage under each camera allowed the lens's optical centers to be re-positioned directly over the
rotational centers of the panning motors, more closely emulating the geometry of biological
vision systems and \simplifying the task of seeing." To model the necessary scalar camera
displacement for any given lens setting, Pahlavan measured the position for the optical center
of the lens for a 32�32 array of focus and zoom positions. The data was then �t with a
six-coe�cient polynomial. The model was third-order in the focus motor and �rst-order in
the zoom motor. The method by which the formulation was determined was not discussed.

The need for this research

To date few predictive models of the relationships between image parameters and the control
parameters of adjustable lenses have been implemented. With the exception of Sobel's and
Pahlavan's work the models we reviewed have typically been for scalar image properties in
only one control variable. Furthermore, these predictive models have been either implicitly
or explicitly based on the premise that the imaging behavior of the lens can be completely
described by the pinhole, thin-lens, or thick-lens abstractions. Lens behaviors that cannot
be explained by these abstractions, such as changes in geometric distortion or the shifting
of the camera's �eld-of-view with changing lens parameters, have not been modeled.

The control of optical parameters is becoming more important in active vision systems.
While present day automated camera systems typically have very good control capability,
the lack of adjustable camera models prevents this capability from being fully utilized. To be
able to e�ectively use these systems we need to be able to build accurate camera models that
hold calibration across continuous ranges of one, two, or even three lens parameters. To do
this we must understand the problems and issues involved in the modeling and calibrating
real automated lenses. Moreover, we must have a comprehensive and systematic approach
to building adjustable camera models for simple to very complex imaging properties.

Previous modeling and calibration for automated lenses has been based on the premise that
lens behavior can be inferred from pinhole, thin-lens, or thick-lens camera models. This
thesis shows that these approaches do not su�ciently capture the complex relationships
between the control parameters and the imaging process. Moreover, we demonstrate how the
idealized behavior assumed with these models can lead to signi�cant performance problems
in two machine-vision tasks: color imaging and focus ranging. We subsequently discuss how
these performance problems can be reduced or eliminated with more complex models and
lens control strategies. An outgrowth of our examination of the behavior of real lenses in
both �xed- and variable-parameter systems is the comprehensive taxonomy for the property
of \image center" we developed.

Our principal contribution is a methodology for producing accurate adjustable camera mod-
els for automated camera systems. This approach involves �rst calibrating a conventional
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�xed camera model at a number of lens settings spanning the lens's control space. We then
model how the terms of the �xed camera model vary with di�erent lens settings by alter-
nately �tting polynomials to individual model terms and reestimating the un�tted terms
using the calibration data. This process is repeated until all of the �xed camera model's
terms have been replaced with polynomial functions of the lens control parameters. The
result is a predictive camera model that can interpolate between the original sampled lens
settings to produce | for any lens setting | a set of values for the terms in the �xed camera
model. We have used this approach to produce an adjustable, perspective-projection cam-
era model based on Tsai's �xed camera model and calibrated and tested our model on two
di�erent, automated camera systems. In both cases the calibrated models operated across
continuous ranges of focus and zoom with an average error of less than 0.14 pixels between
the predicted and the measured positions of features in the image plane. We also calibrated
and tested our model on one system across a continuous range of aperture and achieved
similar results.

In summary then, this thesis provides a methodology for producing adjustable-lens camera
models from �xed-lens camera models.

1.5 Hardware overview

The results presented in this thesis are largely based on experimental work conducted with
two automated camera systems designed and built at Carnegie Mellon's Calibrated Imaging
Laboratory (CIL). The �rst camera system, shown in Fig. 1.4, consists of a Cosmicar 12.5-
75mm (6�) zoom lens mounted on a Panasonic video camera connected to a Matrox frame
grabber. The automation for this lens is provided by digital microstepping motors, which
are connected to the lens body by backlash-free pushrod assemblies. The Cosmicar lens has
3900 steps of resolution for focus, 4000 steps for zoom, and 2700 steps for aperture.

The second camera system, shown in Fig. 1.5, consists of Fujinon 10-130 mm (13�) zoom
lens mounted on a Photometrics scienti�c camera. The automation for this lens is also
provided by digital microstepping motors. The Fujinon lens has 5200 steps of resolution for
focus, 11100 steps for zoom, and 2700 steps for aperture. The Fujinon/Photometrics camera
system also has a built-in seven slot computer-controlled �lter wheel.

A more detailed description of both camera systems and the CIL laboratory is contained in
Appendix A.



10 CHAPTER 1. INTRODUCTION

Figure 1.4: Cosmicar lens and Panasonic camera

Figure 1.5: Fujinon lens and Photometrics camera
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1.6 Thesis organization

The remainder of the thesis is structured as follows:

Chapter 2 illustrates how �rst-order (i.e. idealized) models of variable-parameter lens behav-
ior often fail to capture signi�cant second-order e�ects (e.g. chromatic aberration and focus
magni�cation). We then show how these e�ects can cause signi�cant problems in vision tasks
and how more realistic modeling of the automated lens's behavior and more sophisticated
control strategies can signi�cantly improve performance.

In Chapter 3 we use the property of \image center" as an example to discuss the di�erences
between the ideal image-formation process and the behavior of real lenses and the serious
consequences they can have both for �xed- and variable-parameter lenses. We also present
a comprehensive taxonomy for image center that we developed as an outgrowth of our
examination of the behavior of real lenses.

Chapter 4 explains why modeling and calibrating variable-parameter camera systems is con-
siderably more di�cult than �xed-parameter systems. We then present our new, empirical
methodology for developing calibrated camera models for automated zoom lenses.

Chapter 5 presents a detailed discussion of the formulation, calibration, and testing of the
�xed camera model that we used as the basis for developing the adjustable camera models
described in the following chapter.

Chapter 6 discusses how we applied our methodology (described in Chapter 4) to the �xed
camera model (presented in Chapter 5) to produce an adjustable, perspective-projection
camera model. We calibrated and tested this model on two distinctly di�erent systems for
focus and zoom and on one system for aperture.

Chapter 7 summarizes the speci�c contributions of the research described in the thesis and
discusses remaining open questions and areas for future research.

Appendix A contains a detailed description of the facilities and camera systems of Carnegie
Mellon's Calibrated Imaging Lab. Appendix B describes the details of the approach we used
to measure chromatic aberration. Appendix C describes the approach we used to measure the
center of our autocollimated laser and the centers of the reference points on our calibration
targets. Appendix D describes the calibration of relative and photometric aperture models
for one of our camera systems.
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Chapter 2

Active Lens Control for

Measurement

Adjustable lenses allow us to measure properties of a scene by noting how the scene's image
changes as the lens parameters are varied. Naturally the accuracy of our measurements
depends on how well we model the relationships between the camera's image-formation
process and the lens parameters.

In this chapter we present two vision tasks, color imaging and focus ranging, which are
prone to signi�cant measurement error when �rst-order approximations of the lens's imaging
behavior are used. We then show that more complete models of the imaging behavior allow
more sophisticated lens control strategies and as a result improve task performance.

2.1 Active Color Imaging

Color-image analysis uses the information contained in three spectral bands to determine
properties of the scene being imaged. Implicit in any color-image analysis is the assumption
that the per-pixel information in each band corresponds to the same point, region, or volume
in object space. As we will demonstrate in the following section, this is not always so.

To simplify color band alignment, virtually all color imaging processes use a single lens.
Three basic approaches are used to digitize the bands. The simplest approach, found in
most commercially sold color cameras, uses a single sensor that has its pixel array covered
with a mosaic of color �lters. Spatial interpolation is then used to �ll the gaps in each of
the image bands.

The second approach, used in color cameras for commercial television, is to split the image
into three paths and project each path through bandpass �lters onto separate sensors.

The third approach, used in still color imaging, is to place three bandpass �lters in the
optical path of the camera system, one after another, and take the three images with the

13
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Figure 2.1: Chromatic aberration in a thin lens

same sensor. This is the approach we use in the Calibrated Imaging Lab. It is commonly used
for machine-vision research in color physics because it allows superior registration between
images and an improved SNR for each band.

For the experiments described in this chapter we used the Cosmicar/Panasonic camera sys-
tem, a computer-controlled �lter wheel, and a computer-controlled six-degree-of-freedom
camera platform. The �lter wheel houses six �lters including, Wratten #25 (red), 58 (green),
and 47B (blue). For a more complete description of the equipment see Appendix A.

2.1.1 Chromatic aberration

Chromatic aberration exists in camera lenses because the index of refraction of optical com-
ponents varies as a function of wavelength. This di�erence in refractive index causes the
di�erent wavelengths of light to be refracted or bent to di�erent degrees by the elements of
the lens. For example, given a simple uncorrected thin lens with incident white light rays,
the blue components of these rays will be brought to a focus closer to the lens than the red
components (see Fig. 2.1). Funt and Ho [19] make use of this property for extracting spectral
information to address the problem of color constancy.

Chromatic aberration is an intrinsic property of a camera lens. It can be partially compen-
sated for in the lens optics by using pairs of lens elements with o�setting dispersion factors.
Unfortunately such compensation is usually done for only two wavelengths (red and blue)
and then only at two points in the image �eld: at the optical axis and at some speci�ed radial
distance from the optical axis [43]. For a more detailed discussion of chromatic aberration
in lenses the reader is referred to [42] or [43].

To measure chromatic aberration we used black-on-white checkerboard targets like the one
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Figure 2.2: Checkerboard test target used to measure lateral chromatic aberration

shown in Fig. 2.2. The relative positions of the vertical and horizontal black to white step
edges, measured in each of the bands, provide a measure of the amount of lateral chromatic
aberration in the camera system. Appendix B describes the measurement procedure in detail
and presents the measurement results for 12 di�erent lenses.

E�ects of chromatic aberration on images

Chromatic aberration has three e�ects on color images. It causes di�erences in magni�cation,
focus, and centering between the bands. The �rst two of these e�ects are illustrated in
Fig. 2.1: the scale di�erence (i.e. magni�cation) between images, also called lateral chromatic
aberration, and the di�erence in focus plane position, also called longitudinal chromatic
aberration.

The e�ects of chromatic aberration can most readily be observed in color images of scenes
containing sharp black to white transitions, such as the grid of black lines on a white back-
ground shown in Fig. 2.3. Figure 2.4 is a graph of the red, green, and blue pixel values
for the scanline in section 1 of the grid image. The vertical black grid line that cuts across
section 1 is near the optical axis of the lens and shows no noticeable misregistration between
the red, green, and blue color bands. The graph in Figure 2.5 shows the pixels in section 2 of
the same scanline. The vertical black line being examined in this �gure is relatively far from
the optical axis of the lens and clearly shows the misregistration of the three color bands due
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Figure 2.3: Image of grid of black lines on a white background

to lateral chromatic aberration. The slightly broader width of the red valley in both �gures
shows the defocus in the red image (when lens is initially focused with blue light). With
this camera system and at this lens setting the di�erence in the magni�cation between the
uncorrected red and blue images is on the order of 0.5%, or 1.2 pixels near the outer edges
of images that are 512 pixels wide (i.e. a 1.2 pixel displacement in one direction at the left
edge and a 1.2 pixel displacement in the other direction at the right edge).

While magni�cation and defocus result from intrinsic properties of the optical elements, the
third chromatic e�ect, decentering between the image bands, is the result of misalignment in
the optical elements of the lens. Misalignment causes light rays of di�erent wavelengths to
take slightly di�erent optical paths through the lens. Furthermore, the decentering e�ect is
compounded by optical \rollout." Changing the lens's focus and zoom settings changes the
degree of misalignment and causes a drift in the image center. Whereas the magni�cation
di�erences are radially symmetric with respect to the center of the optical system and have
a smaller magnitude nearer the center than at the edge, decentering di�erences a�ect the
entire image uniformly. In our system the measured translation between the uncorrected
red, green, and blue bands ranges from 0.1 to 0.4 pixel widths, depending upon the image
band and the lens settings.
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Figure 2.4: Pixel intensity pro�les near center of image (cross section 1)
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Figure 2.5: Pixel intensity pro�les near edge of image (cross section 2)
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E�ects on color analysis

The result of the magni�cation, focus, and centering di�erences between the color bands is
that the three values for each pixel in the color image do not correspond to the same point
in object space. This has serious implications for color image analysis. For example, regions
close to rapid color changes (e.g. near highlights or the edges of features) will show hue
shifts. Looking closely at the pixels in section 2 of Fig. 2.3 (shown in pro�le in Fig. 2.5),
going left to right, we see the pixel colors change from white, to bluish, to black, to reddish,
and back to white. As we will show later, these hue shifts show up as erroneous points in
color histograms of the image, which in turn can lead to problems in the segmentation and
analysis of color images [26][36]. Edge detection and edge localization in color images are
also confounded in obvious ways.

2.1.2 Compensation approach

The most direct approach to compensating for chromatic aberration is by modifying the focus
and zoom for each of the color bands to null out the defocus and magni�cation di�erences.
Correction for image decentering can be accomplished by shifting the camera in the XY

(i.e. sensor) plane. This is the compensation approach we use and call Active Color Imaging
(ACI).

We determine the lens settings for the compensated images by �rst placing a black-on-white
calibration target (shown in Fig. 2.6) directly in front of the scene being imaged. The
black-to-white edges on the target are used to focus on and to determine the relative image
magni�cation and shifting between the color bands. Once the correct focus, zoom, and
shift settings for the lens have been determined, the calibration target is removed and a
compensated color image of the scene taken.

In our Active Color Imaging approach the blue image is used as \ground truth." The lens
settings for the red and the green bands are determined by minimizing the errors between
the blue and red images and the blue and green images. To determine the compensated lens
settings for the red and green images we �rst �nd the best focus position for each of the three
bands by using the automated focusing algorithm developed by Krotkov [27]. Next we take
three focus-corrected images and determine the magni�cation di�erences between the blue
and red and the blue and green bands. Using a calibrated lens model that relates the image
magni�cation to the positions of the focus and zoom motors we then change the zoom for the
red and the green bands to correct the magni�cation di�erences that result from chromatic
aberration and from refocusing. Finally, to correct the color-dependent image translation, we
take three focus- and magni�cation-corrected images and determine the amount of camera
shifting that is needed in the red and green bands to compensate for translation introduced
by the optics.
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Figure 2.6: Active Color Imaging calibration target

Calibration example

To demonstrate the steps in the Active Color Imaging approach we use the test target
in Fig. 2.7. By examining the relative positions of the 12 edges in a scanline crossing
the center of the target we can graphically show the e�ects of each of the steps of the
compensation procedure. Plotting the di�erence in the edge positions (in pixel widths)
between the uncorrected blue and red images versus the edge number we obtain the solid
line in Fig. 2.8. (For a lens without chromatic aberration the line would be zero everywhere,
indicating the same edge positions in the blue and red images.) The plot in Fig. 2.8 shows
two e�ects: the relative magni�cation of the blue and red images indicated by the slope of the
blue-red line, and the X component of the image translation indicated by the displacement of
the line up or down. In this example the magni�cation di�erence between the uncompensated
blue and red images is -0.45% and between the blue and green images is -0.14% 1. The X

shift between the blue and red images is 0.12 pixels and between the blue and green images
is 0.08 pixels.

The dotted line shows the blue-red di�erences after refocusing the red image. The mag-
ni�cation di�erence has now shifted in the other direction as a result of the magni�cation
change introduced by refocusing. After focus compensation the magni�cation di�erence is
1.01% between the blue and red images and 0.35% between the blue and green images. The
X shift is 0.35 pixels between the blue and red images and 0.14 pixels between the blue and

1For clarity the blue-green plot is not shown on this graph.
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Figure 2.7: Active Color Imaging demonstration target
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Figure 2.8: Active Color Imaging results
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Table 2.1: Typical camera and lens settings for corrected color images

color �lter focus motor di�erence from zoom motor di�erence from camera
(out of 3900) blue setting (out of 4000) blue setting X shift

red 1407 -6.36% 533 +0.83% 0.15mm
green 1592 -1.62% 508 +0.20% 0.05mm
blue 1655 500

green images.

The dashed line shows the blue-red di�erences after re-zooming the red image. While the
slope of the line is approximately zero, indicating that the magni�cation di�erences between
the bands have been eliminated, the image translation is now obvious. After focus and zoom
compensation the magni�cation di�erence is 0.07% between the blue and red images and
0.01% between the blue and green images. The X shift is 0.46 pixels between the blue and
red images and 0.12 pixels between the green and blue images.

The dash-dot line shows the �nal result after the camera has been shifted. The plot is
now close to zero everywhere, emulating ideal lens behavior. At the edge of the image the
misregistration has dropped from approximately one pixel to approximately one-tenth of
a pixel. The �nal magni�cation di�erence is 0.05% between the blue and red images and
-0.01% between the blue and green images is -0.01%. The �nal X shift is 0.00 pixels between
the blue and red images and 0.01 pixels between the blue and green images.

Active Color Imaging requires very �ne control of the lens parameters. For this example the
lens and camera parameters were changed by the amounts shown in Table 2.1. The image
was initially composed with the zoom motor set to 500 units (focal length � 67mm). At the
start of the ACI procedure the lens was focused with the blue, green, and red �lters. The
�nal focus motor positions are listed in column 2, with the percentage deviation from the
blue settings listed in column 3. Using the refocused images, the compensating zoom motor
settings were calculated for the green and red images. The �nal zoom settings are listed in
column 4 and the percentage deviation from the blue settings in column 5. Finally, using
the focus- and zoom-compensated images, the required X camera shift was calculated for
the green and red images. These values are shown in column 6. Shifting in the Y direction
was not performed for this example.

2.1.3 Experimental results

Figures 2.9 and 2.10 show the magnitude of the image misregistration (in pixel widths)
between the blue and red images coded in a gray scale ranging from 0 pixels (black) to 1.4
pixels (white). Figure 2.9 shows the blue-red misregistration for the target imaged without
lens compensation. The misregistration across the image ranges from 0 to 1.2 pixel widths.
For the blue-red case the zero error region is slightly to the right of the image center. In
general the location of the zero error region for the blue-green case will not be the same.
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Figure 2.10 shows the magnitude of the blue-red misregistration for the target imaged with
lens compensation. The remaining misregistration is now less than 0.1 pixel widths over
most of the image. This result indicates that with active lens compensation it is possible to
reduce the image band misregistration introduced by chromatic aberration by over an order
of magnitude.

Another way of showing the e�ects of active lens compensation is to plot image pixels in RGB
space. Figures 2.11 and 2.12 contain color histograms of the region containing the rightmost
vertical line of color image of a black grid on a white background shown in Fig. 2.3. Ideally
all pixels in the grid image should be black, white, or shades of gray. The plotted pixels from
the region containing the grid line should form a straight line of grays between the lower
left corner of the color cube (corresponding to black) and the upper right corner of the cube
(corresponding to white). This is not the case in the uncorrected image where pixels show
two distinct paths from black to white (see Fig. 2.11). The �rst path bends towards the red
corner of the color cube while the second path bends to the blue corner. These deviations
would pose a serious problem for any algorithm trying to segment the image by using regions
in the color space. In Fig. 2.12 the histogram of the pixels from the image taken with active
lens compensation shows a much tighter grouping of pixel values along the gray line.

2.1.4 Conclusion

The lenses typically used in computer vision and the processes employed for taking color
images will generally produce images that have magni�cation, focus- and image-center di�er-
ences between the color bands. We have measured comparable levels of chromatic aberration
in a wide variety of lenses, including CCTV lenses, 35mm SLR lenses and ENG/EFP color
TV lenses, including lenses that are advertised as being corrected to eliminate chromatic
aberration (See Appendix B for results). These e�ects are due to both chromatic aberration
and optical misalignment in the camera lens and result in signi�cant levels of misregistration
and defocus in the �nal composite image. With active compensation of the lens settings and
the camera position, misregistration between the color bands of an image can be reduced by
an order of magnitude.

Chromatic aberration e�ects can also be removed by post processing the image bands.
Boult [7] compares our ACI approach to their image warping method. Image warping has
the advantages that it can be applied to cameras that take RGB images in parallel (e.g. color
video cameras), does not require special lens-control hardware, and can handle chromatically-
varying geometric distortions that cannot be corrected by focusing or zooming. On the other
hand, the image warping approach cannot compensate for defocus between image bands and
usually requires a relatively large amount of calibration data. Boult found that while image
warping compared reasonably well, both quantitatively and qualitatively with our approach,
our approach produces better overall results for uncorrected camera lenses because of its
ability to correct for focus di�erences between bands.
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Figure 2.9: Full �eld blue/red misregistration | uncompensated image

Figure 2.10: Full �eld blue/red misregistration | compensated image



24 CHAPTER 2. ACTIVE LENS CONTROL FOR MEASUREMENT

white

black

blue

green

red

Figure 2.11: Color histogram | uncompensated image

white

black

blue

green

red

Figure 2.12: Color histogram | compensated image
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Figure 2.13: Focus magni�cation in a thin lens

2.2 Constant Magni�cation Focusing

In range-from-focus the distance to a target is estimated by moving the camera lens through
a series of focus positions, while the sharpness of the target's image at each position is
determined by evaluating a sharpness criterion function. Given the focus position of the
lens where the criterion function peaks, the distance between the camera and the target can
be determined using a calibrated lens model. Implicit in the range-from-focus procedure
is the assumption that the position of the criterion function's peak is dependent only on
the distance between the target and the camera. In the following section we demonstrate
how, for the most widely used class of criterion functions, the position of the peak is also
dependent on the lens's aperture and on the content of the image.

Many sharpness criterion functions have been suggested for focus ranging [27]. In our experi-
ments we make use of a function based on the sum of squared image gradients, also called the
Tenengrad function. Most of our discussion transcends a speci�c choice of criterion function.

2.2.1 Focus magni�cation

For a �xed focal length lens, focus magni�cation is the change in image magni�cation that
results as the camera's sensing plane is moved along the optical axis to vary the lens's focused
distance. This process is illustrated for a simple thin lens in Fig. 2.13. Focus magni�cation
causes the image to scale up as the lens is focused from far to near. For zoom lenses focus
magni�cation is conceptually the same.

If one considers focus magni�cation the net magni�cation of a zoom lens is actually a function
of both the focus motor and the zoom motor. By measuring the dimensions of a target over
a range of focus and zoom settings (mf and mz) we can produce a calibrated lens model for
the relative image magni�cation M = g(mf ;mz). Figure 2.14 shows a plot of this model.
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Figure 2.14: Simple image magni�cation versus focus and zoom motors

E�ects on the image

Focus magni�cation causes three e�ects in range-from-focus: feature clipping, perimeter scal-
ing, and gradient scaling. Feature clipping, illustrated in Fig. 2.15, involves the movement of
features into or out of the window of interest as the image magni�cation changes. This e�ect
is pretty straightforward and has been noted by several researchers, including Krotkov [27],
Darrell [17], Nair [33], and Nayar [35]. Perimeter scaling, illustrated in Fig. 2.16, involves the
proportional scaling of the length of feature perimeters as image magni�cation is changed.
Essentially, perimeter scaling encompasses image scaling e�ects in directions perpendicular

to intensity gradients in the image. Gradient scaling, illustrated in Fig. 2.17, involves the
inverse scaling of the width and slope of intensity gradients and encompasses image-scaling
e�ects in directions parallel to the direction of the image's intensity gradients.

E�ects on focus ranging

For accurate focus ranging it would be convenient if the position of the criterion function
peak would depend solely on the focused distance of the lens. As we will demonstrate, focus
magni�cation can make the position of the peak sensitive to additional factors.

Feature clipping causes abrupt changes in the criterion function value as features enter
or leave the evaluation window. These changes, in turn, may result in multiple criterion
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Figure 2.17: Focus magni�cation causing gradient scaling
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function peaks, which in turn can lead to erroneous range estimates. The other two focus
magni�cation e�ects, perimeter scaling and gradient scaling, cause more subtle biases in the
position of the criterion function peak.

With focus magni�cation, the size of an image scales up as the lens is focused from far
to near. As the image scales up feature perimeters will also be proportionately scaled up,
causing the value of the criterion function to increase. This increase, in turn, contributes a
bias in the position of the criterion function peak, making the point of best focus appear too
near. However, as the image scales up with focus magni�cation, the intensity gradients in
the image spread out laterally. In the one-dimensional case, shown in Fig. 2.17, the value of
a sum-of-squared gradients criterion function would be

value =
a2

b
:

Thus, as the image | and b | are scaled up, the value of the criterion function is pro-
portionately scaled down. This decrease contributes a bias in the position of the criterion
function peak, making the point of best focus appear too far away.

Both the perimeter and gradient scaling e�ects are functions of image magni�cation and the
rate of blurring as the lens is moved away from the point of best focus. The blur rate is
e�ectively a function of the lens's aperture. At higher blur rates (wider apertures, narrower
depths of �eld) the value of the criterion function falls o� too quickly for focus magni�cation
e�ects to signi�cantly bias the position of the function's peak. At lower blur rates (narrower
apertures, wider depths of �eld) the value of the criterion function falls o� more slowly and
focus magni�cation has a more pronounced e�ect.

The relative contributions of the e�ects of perimeter scaling and gradient scaling depend on
the content of the scene being imaged. Perimeter-scaling e�ects dominate if the intensity
gradients in the image are sharp (e.g. black to white step edges). Gradient-scaling e�ects
dominate if the intensity gradients are gradual (e.g. shadows on curved surfaces).

The net result of the two competing focus magni�cation e�ects is an additive bias to the
position of the criterion function peak. This bias is dependent on both the lens's aperture
and the image content.

2.2.2 Compensation approach

To avoid focus magni�cation e�ects in focus ranging, researchers have suggested either keep-
ing the image magni�cation constant [17] or keeping the evaluation window large enough
to completely encompass the features being ranged [27]. However, as we have suggested
above, simply keeping the features being ranged entirely within the evaluation window will
not overcome all of the focus magni�cation e�ects. Only a constant image magni�cation
approach can avoid the problems that result from focus magni�cation.

Darrel [17] suggests two approaches for dealing with focus magni�cation. The �rst approach,
and the one he implemented, is to cancel out the magni�cation change by scaling the images
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evaluation window evaluation window

Figure 2.18: Box and bar targets for perimeter scaling experiment

in software after they are taken. This approach is relatively simple and works even for �xed-
focal-length lenses. One major drawback of this approach is that, as the image is scaled, the
spatial interpolation and resampling process will smooth the image and in
uence the value
of the criterion function. An additional drawback is the computational e�ort required for
scaling the images.

The second approach suggested by Darrell, is to null out the focus magni�cation by changing
the lens's zoom before the images are taken. While it is more e�cient and e�ective than
scaling images, this approach requires precise, active lens control as the focus of the lens is
varied. In our system we use the current focus and zoom settings, the new focus setting, and
our relative magni�cation model to �nd a new zoom setting that maintains the same relative
magni�cation. We call this compensation approach \constant magni�cation focusing."

2.2.3 Experimental results

To illustrate the e�ects of focus magni�cation on the position of the Tenengrad criterion
function peak we use the two targets illustrated in Fig. 2.18. Target 1, completely enclosed
in the evaluation window, is a black square on white background. Target 2 is a black bar
on white background, and only the center region of the bar is contained in the evaluation
window. For both targets the majority of the value of the criterion function results from the
black-to-white edge, while the totally white and totally black regions contribute insigni�cant
amounts. For target 1 the length of the perimeter of the black region changes with the focus
magni�cation, while for target 2 the perimeter length remains constant. For both targets
the width of the intensity gradient at the black to white edge is not large enough to produce
signi�cant gradient scaling e�ects. The box and bar targets are both located on the same
plane, 1.5m away from the camera's sensor plane.

For the sharpness criterion function in these experiments we use a sum of squared image
gradients. The image gradients are calculated using a 3�3 Sobel operator. The position
of the criterion function peak is determined by �tting the criterion function values to a
quadratic curve and solving for the curve's peak. To highlight any bias in the position of
the peak we use a narrow aperture.

For the conventional focus-ranging approach the focus motor is varied while the zoom motor
is held constant at 500 motor units. In this example the image magni�cation over the range
of focus changes by a factor of 0.751.
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Figure 2.19: Focus versus zoom settings for both compensated and uncompensated focusing

For our Constant Magni�cation Focusing approach the focus and zoom motors are con-
currently varied to keep the magni�cation constant. Figure 2.19 shows the zoom and focus
settings for both compensated and uncompensated focusing. In this example the zoommotor
varies from 747 motor units to 91 motor units. The compensated (i.e. Constant Magni�ca-
tion Focusing) curve is essentially an isomagni�cation contour from the magni�cation model
shown in Fig. 2.14.

Figure 2.20 shows that with conventional focusing there is a signi�cant bias in the box's
criterion function peak position. When the focus magni�cation is compensated, the bias in
the box's peak position is eliminated. The peak position for the bar target is una�ected.
For an actual range of 1.5m the bias in the uncompensated box target's peak position
corresponds to a 6% error in the range measurement determined from a calibrated focused-
distance model.

To observe the e�ects of gradient scaling on the position of the Tenengrad criterion function
peak we have used targets similar to the two illustrated in Fig. 2.21. Target 1 is a bar whose
optical density changes smoothly from white to solid black while target 2 is a solid black bar.
To avoid perimeter-scaling e�ects both bar targets extend beyond the edges of the criterion
function evaluation window. In qualitative tests we have observed signi�cant biases in the
position of the criterion function peak for the graded bar. We have no quantitative results
to report.

2.2.4 Conclusion

In range-from-focus tasks, where the lens's focus is varied without magni�cation compensa-
tion, several image-scaling e�ects can bias the position of the sharpness criterion function's
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peak away from the point of best focus. The amount and direction of the bias depends
on the size of the aperture and on the content of the image region being evaluated. With
active lens compensation, focus-magni�cation-induced bias problems can be e�ciently and
e�ectively eliminated.

2.3 Summary

The performance of vision tasks can be adversely a�ected when we neglect second-order lens
behaviors.

In both the conventional color-imaging and focus-ranging tasks there is a �rst-order assump-
tion that there is a simple relationship between the properties being measured (the color
composition of a point in space and the peak position of the sharpness criterion function),
and the camera parameter being varied (the color �lter and the focus motor). We demon-
strated that the relationships are much more complex and that more complete models of the
imaging behavior allow better lens control and improve task performance.

We have shown how in color imaging chromatic aberration can cause color-band misregis-
tration and defocus, which in turn can signi�cantly degrade the performance of color-image
analysis algorithms. To compensate for chromatic aberration we have developed a new
color-imaging procedure | Active Color Imaging | which reduces color misregistration by
an order of magnitude. We also developed a simple approach to measuring lateral chromatic
aberration across the full �eld of view of a camera system. Furthermore we demonstrated
how focus magni�cation in focus ranging can cause bias in the position of criterion function
peaks, which in turn causes incorrect estimates of range. To compensate for focus mag-
ni�cation we implemented a method (�rst proposed by Darrel) | Constant Magni�cation
Focusing | to directly eliminate the e�ects of image scaling.



Chapter 3

Image Center

To model the relationship between the positions of features in the object space and their
corresponding positions in the image plane we need to know the camera's image center.
First-order models of lens behavior, such as the pinhole-camera model or the thin-lens model,
suggest that the image center is a single, �xed, and intrinsic parameter of the lens. On closer
inspection, however, we �nd that there are many possible de�nitions for image center. Most
image centers do not have the same coordinates and, moreover, move as lens parameters are
changed. In this chapter we present a taxonomy that includes 15 image centers.

Camera calibration in machine vision has traditionally paid little attention to the issue of
image center. Typically the image center used to model one imaging property is obtained by
measuring a completely di�erent property, if a measurement is made at all. Such approaches
can reduce the overall accuracy of the camera calibration. By using the proper image center
for each image property that we are trying to model and by calibrating the image centers
over the appropriate ranges of lens parameters we can signi�cantly improve the accuracy of
our camera models.

3.1 Camera calibration and image center

Traditional camera calibration involves modeling the relationship between the positions of
features in the object space and their corresponding positions in the image. The simplest
model for this relationship is the pinhole camera in which the coordinates of points in the
3D object space are projected through a center of perspective projection down to the 2D
image plane. The normal projection of the center of perspective projection down to the
image plane is the image center.

Precise camera models have many terms that describe the properties of the imaging process,
and some of these terms account for properties that vary with their distance from the center
of the image. To model such properties we need to know where their image center is.
Naturally, the accuracy of the model depends on the accuracy of the center.

33
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An ideal lens would have one image center and this center would be used in modeling
any of the radially varying imaging properties. In practice the manufacturing tolerances
for lenses result in di�erent imaging properties with centers in di�erent places, as shown in
Fig. 3.1 for the Fujinon/Photometrics camera system. Thus, image centers are not necessarily
interchangeable. Indeed, to fully model a camera we may need several di�erent image centers.

The situation becomes even more complex for an adjustable lens. When camera parameters,
such as focus or zoom, are varied, the position of the camera's �eld of view and image centers
will also vary. Figure 3.2 shows how the position of a �xed point at the center of the camera's
�eld of view shifts as a function of the focus and zoom motors of the camera lens.

We start this chapter by examining why di�erent image properties do not necessarily have
the same image center in real lens systems. We also discuss why the image centers move in
variable-focus and variable-focal-length camera lenses. We then present a taxonomy of image
center de�nitions based on the number of lens settings that are required to determine the
image center. Procedures for measuring 15 di�erent image centers are given and experimental
results are then presented for ten of these methods. We conclude by examining how image
center and �eld of view move in a variable-parameter zoom lens.

3.2 Real lenses

Traditionally a camera's image center is considered to be the point of intersection of the lens's
optical axis with the camera's sensing plane. The optical axis is de�ned as the line passing
through the centers of the optical components in the lens. In real lenses the optical axis is
not so easily de�ned. The type of complications that arise depend in part on whether the
lens has �xed or variable parameters and on how the variable parameters are mechanically
implemented.

In an ideal camera lens the components of the lens are be aligned along the a single axis,
making the lens and all of its imaging properties radially symmetric. In real lenses things are
not so easy. For a simple lens element (see Fig. 3.3) there are actually two axes of symmetry,
one optical and one mechanical. The optical axis is de�ned as the straight line joining the
centers of curvature of the two lens surfaces. The mechanical axis of the lens is determined
during manufacture by the centerline of the machine used to grind the lens's edge. Ideally
the optical and mechanical axes coincide, in practice, though, they don't. The tolerance
between them is called decentration [43].

In a compound lens two or more lens elements are aligned and mounted together to form the
complete lens. Ideally all of the elements are aligned along a common optical axis, but this is
not always feasible given the decentration in the individual elements. The cumulative e�ect
of the mechanical tolerances for the lens elements is that there is no \ideal" optical axis for
the lens. Decentration and misalignment in the lens produce tangential lens distortion and
asymmetric, radial lens distortion [11]. Thus the di�erent imaging properties of the lens do
not necessarily have a common axis of symmetry.
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With adjustable lenses the focus and magni�cation are changed by varying the positions of
the lens elements along the axis of the lens. Moving the lens elements is typically accom-
plished in one of two ways. In the �rst method the lens elements are mounted in a threaded
section of the lens barrel, which can be rotated to move the elements along the axis of the
lens. In the second method the lens elements are mounted on slides or rails, which can be
translated along the axis of the lens. For both approaches the misalignments between the
lenses' mechanical and optical axes change every time the positions of the lens elements are
changed. The rotation of a lens group will cause a rotational drift in the position of the
lens's optical axis [28], while the sliding of a lens group will cause a translational motion of
the lens's optical axis in the image plane. These rotational and translational shifts in the
position of the optical axis cause a corresponding rotational and translational shifting of the
camera's �eld of view.

In lenses with variable focus and �xed focal length as illustrated in Fig. 3.4, typically all
the lens elements are mounted in a single assembly. To vary the lens's focus the separation
between the lens assembly and the camera sensor is changed by moving the lens assembly
with either a rotational or translational mechanism. A less common focusing method found in
newer 35mm, auto-focus lens designs involves the movement of a small, lightweight element
within the lens's optics to vary the focus of the image [21].

In lenses with variable focus and variable focal length (i.e. zoom lenses) (see Fig. 3.5), the
focal length is changed by moving groups of lens elements relative to one another along
the axis of the lens. To keep the focused distance of the lens constant as the focal length
is varied, one of the lens groups must be shifted in a non-linear motion, as illustrated in
Fig. 3.6. Typically this type of mechanical compensation is accomplished with a pin sliding
in a rotating cam, such as the one shown in Fig. 3.7. While the cam moves with a rotating
motion during zooming, the lens groups themselves move with a translational motion. The
focus in zoom lenses is typically varied by using a rotational mechanism on the front lens
group.
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Figure 3.6: Non-linear motion of lens groups during mechanical compensation (From [43])

Figure 3.7: Mechanical compensation cam (From [43])
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3.3 A taxonomy of image centers

In machine vision the image center is most commonly de�ned as the focus of expansion or
the center of perspective projection. While the numerical center of the image (i.e. digitizer)
coordinates is another commonly used de�nition, this one, unlike the other two, does not
involve measurements of a system's actual imaging properties. Finding the center of image
coordinates belongs to the class of techniques that we call non-imaging since they require
no image measurements. Determining the center of perspective projection belongs to a
second class that we call single image techniques that measure properties of images taken
at a single lens setting. The focus-of-expansion approach belongs to a third class, called
multi-image techniques, which measure properties that occur between two or more images
taken at di�erent lens settings. This approach should not be confused with simply tracking
one of the single-image techniques over di�erent lens settings.

We base our taxonomy on number of di�erent lens settings required for establishing the
image center. For techniques that make use of image measurements we further divide our
taxonomy into two subcategories: feature based and non-feature based. Feature-based tech-
niques involve the detection of feature points in the image followed by the application of a
geometric interpretation of the 3D to 2D projection to yield an image center. The center of
perspective projection (section 3.3.2) is an example of this type of technique. Non-feature-
based techniques involve using the image sensor or some other sensing device to take direct
measurements of the image formed by the lens. Taking the image of an autocollimated laser
(section 3.3.2) is an example of this type of technique.

Based on these techniques we can give at least 15 di�erent de�nitions of image center and
divide them into the following classes:

Non-imaging
� Numerical Center of Image/Digitizer Coordinates (section 3.3.1)
� Center of Sensor Coordinates (section 3.3.1)

Single image
Feature based

� Center of Radial Lens Distortion (section 3.3.2)
� Center of Perspective Projection (section 3.3.2)
� Center of Lines of Interpretation (section 3.3.2)
� Center of Field of View (section 3.3.2)

Non-feature based
� Center of an Autocollimated Laser (section 3.3.2)
� Center of cos4th Radiometric Fallo� (section 3.3.2)
� Center of Vignetting/Image Spot (section 3.3.2)
� Center of Focus/Defocus (section 3.3.2)

Multi-image
Feature based

� Center of Expansion (section 3.3.3)
� From Focus
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� From Zoom
� From Aperture
� From Color Band

� Focus of Expansion (section 3.3.3)

3.3.1 Non-imaging de�nitions

By de�nition non-imaging techniques do not make use of image properties to determine
image center. Instead, the image center is de�ned in terms of the camera's sensor or digi-
tizer properties. These properties in turn depend on the type of camera being used. Two
techniques are used in modern solid state cameras to obtain digital images from a camera's
sensor: video output cameras (also called closed-circuit television or CCTV cameras) and
non-video digital output cameras (also called scienti�c, slow-scan, or pixel-clocked cameras).

In video output cameras each row of the CCD is scanned o� the sensor and converted to a
continuous analog signal. This signal is resampled by a digitizer board to obtain a digital
representation for the row. In this type of camera there is a direct relationship between the
row numbers on the sensor and the row numbers on the digitizer. However, the relationship
between the column numbers on the sensor and the column numbers in the digitizer is
not direct: instead, it depends on the synchronization of the digitizer to the start of each
row's analog signal and on the relative rates of the sensor's output clock and the digitizer's
sampling clock.

In non-video digital output cameras the sensor's pixels are digitized directly as they are
clocked o� of the sensor, resulting in a one-to-one correspondence between the sensor's row
and column pixel coordinates and the digitizer's coordinates.

Numerical center of image/digitizer coordinates

If the numerical center of the image coordinates is used as image center then the coordinates
of the image center are trivially given by

Cx =
xmax � xmin

2

Cy =
ymax � ymin

2

where xmax, xmin, ymax, and ymin are the maximum and minimum column and row numbers
respectively.1

1Throughout this thesis we specify the image center in pixels along xy image coordinates, where x

corresponds to column number in the image and y corresponds to row number.
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Center of sensor coordinates

If the numerical center of the sensor's pixel array is be to used as the image center then the
coordinates of the image center are given by

Cx = (Cx sensor � hx)�
fsensor clock

fdigitizer clock

Cy = Cy sensor � hy

where

Cx sensor is the center of the sensor in pixels in the x direction,

Cy sensor is the center of the sensor in pixels in the y direction,

hx is the number of sensor columns skipped over before digitizing starts,

hy is the number of sensor rows skipped over before digitizing starts,

fsensor clock is the frequency that sensor elements are clocked o� of the CCD and

fdigitizer clock is the frequency at which the digitizer samples the video signal.

For non-video digital output cameras hx and hy are integers and fsensor clock = fdigitizer clock.

3.3.2 Single image de�nitions

Single-image techniques rely on the analysis of images taken at one �xed lens setting to
estimate the image center. These techniques are important because in many machine-vision
systems the lens parameters are not automatically adjustable; they may even be �xed.

Center of radial lens distortion

\Lens distortion" is the displacement of an image point from the position that is predicted by
a camera's perfect perspective projection. Displacements along radial lines from the center
of an image are called \radial lens distortions." In radial lens distortion the relationship
between the distorted position of a point (Xd; Yd) on the image plane and the undistorted
position of the point (Xu; Yu) can be modeled as

Xu = (Xd � Cx)(1 + �1r
2 + �2r

4 + � � �) + Cx

Yu = (Yd � Cy)(1 + �1r
2 + �2r

4 + � � �) + Cy

r =

vuut"dx
sx
(Xd � Cx)

#
2

+

"
dy(Yd �Cy)

#
2

where dx, dy, and sx are camera constants and �i are the distortion coe�cients.
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Figure 3.8: Vanishing points of a right-angled cube

To determine the center of radial lens distortion we start with a rough estimate of im-
age center and calibrate a perspective-projection camera model for the lens using Tsai's
algorithm[52]. In Tsai's algorithm the image center is assumed to be a constant that is de-
termined before the camera model is calibrated. After calibrating we use iterative, non-linear
optimization to determine the image center that produces the minimum image-plane error
for the camera model. The details for this procedure are presented in Chapter 5.

Center of perspective projection

Under perspective projection, lines that are parallel in the object space but not parallel to
the camera's sensing plane will appear to intersect at a location (u; v), called a vanishing
point. With three sets of lines, where the lines within each set are parallel in object space
and where each of the sets are not parallel with each other or the image plane, there will
be three vanishing points (ua; va), (ub; vb), and (uc; vc). Further, if the three sets of parallel
lines are mutually perpendicular in object space, then the center of perspective projection
for the camera can be calculated from the three vanishing points using the formula presented
in [54],

"
Cx

Cy

#
=

"
uc � ua vc � va
uc � ub vc � vb

#
�1
"
ub(uc � ua) + vb(vc � va)
ua(uc � ub) + va(vc � vb)

#

An image of three sets of parallel lines that are mutually orthogonal can easily be obtained
by imaging the corner of a right-angled cube and using the cube's nine visible edges, as
shown in Fig. 3.8.
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Figure 3.9: Center of lines of interpretation

Center of lines of interpretation

In a camera each pixel lies on a \line of sight" (line of interpretation) through the object
space. Theoretically all lines of interpretation should intersect behind the image plane at a
location, the camera's viewing point. The normal projection of the viewing point onto the
imaging plane de�nes a center for the lines of interpretation. For this approach we require
the equations of at least three non-coplanar lines of interpretation, L1, L2, and L3, and
the 2D image coordinates of their intersection with the imaging plane, P1, P2, and P3. The
intersection of the lines of interpretation determines the 3D coordinates of the viewing point.
The relative 2D distances between the images of the lines of interpretation at P1, P2, and P3

together with the equations of the lines of interpretation determine the parameters of the
image plane. Finally, the normal projection of the viewpoint onto the image plane provides
us with the image center, as illustrated Fig. 3.9.

To determine the equations of lines of interpretation we use a target consisting of two raised
pins, T1 and T2, mounted on the ends of a rod. The rod is manipulated manually until the
two pins coincide in the camera's image plane. A pair of surveyor's transits are then used
to determine the equation in 3D world coordinates of the line of interpretation connecting
T1 and T2. The location of the image of the two superimposed pins de�nes the interception
point of the line of interpretation with the image plane.

As with the center of perspective projection, the technique based on lines of interpretation
uses a limited number of image measurements to determine the image center, generally
without regard to underlying phenomena, such as radial lens distortion. As a result the
image centers established with this technique tend not to be very robust.
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Figure 3.10: Center of �eld of view

Center of �eld of view

A camera's four sensor corners can be used to de�ne the extent of the camera's �eld of view.
The �eld-of-view center is simply the coordinates of the image of the physical center of the
�eld of view in object space.

To measure the �eld-of-view center we position the straight edge of a target such that it
extends precisely from the upper right hand corner of the camera's image to the lower left
hand corner. A second image is taken with the target's edge extending across to the alternate
corners of the image. The �eld-of-view center is then determined by �nding the location of
the intersection of the edges in the two superimposed images, as shown in Fig. 3.10.

Center of an autocollimated laser

In an ideal lens the centers of the lens elements' radii of curvature would all fall on a line
de�ned as the optical axis. In this situation a ray of light traveling down the optical axis
of the lens would remain unbent and would strike each lens element normal to its surface.
Any light re
ected back from a lens surface would travel directly back along the path of the
incident ray. In a real lens the centers of the lens elements' radii of curvature do not fall on
a line. Instead, due to manufacturing tolerances the lens elements are decentered and tilted
relative to one another. As a result the re
ected light is not returned directly along the same
path; instead, it returns at various angles relative to the incident light.

In the autocollimated laser approach a low-power laser beam is passed through a hole in a
white screen and into the objective of the lens under test, as illustrated in Fig. 3.11. The
laser beam serves as an intense, highly collimated light ray. As the beam travels down the
lens, the lens elements re
ect part of the ray back out through the lens and onto the white
screen. By manipulating the position and orientation of the lens, the re
ections coming back
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Figure 3.11: Center of an autocollimated laser

from the lens can be roughly lined up with the hole through which the laser is passed. When
the re
ected light is in its tightest grouping the laser is said to be \autocollimated," meaning
that the laser beam is traveling along the \best" optical axis for the lens. An image taken
with the laser in this con�guration yields the image center for the autocollimated laser.

Center of cos4th radiometric fallo�

In a lens system the illumination of the image plane will be found to decrease away from
the optical axis at least with the 4th power of the cosine of the angle of obliquity with the
optical axis [25]. This fallo� can be clearly seen in Fig. 3.12, which shows the pro�le of a
scanline taken from the image of a more or less uniform white �eld. The abrupt drop in
intensity values near the edges is due to vignetting, which will be discussed in section 3.3.2.

The most direct way to determine the center of radiometric fallo� would be to take an image
of a uniform white �eld, smooth it to remove per-pixel noise, and then �nd the location of the
intensity peak. In practice it is nearly impossible to create a target with uniform re
ectance
and illumination across the full �eld of view. Rather than trying to measure the intensity
across the full �eld of view at once, we instead measure the intensity of a small di�use
calibrated light source. By stepping the calibrated light source across the camera's �eld of
view we build up a set of intensity measurements for the entire image plane. To determine
the center of the radiometric fallo� we �t the simple, bivariate-quadratic polynomial

I(x; y) = a00 + a01y + a10x+ a11xy + a02y
2 + a20x

2

to the measurements. The position of the polynomial's peak | the center of the radiometric
fallo� | is then given by

Cx =
a01a11 � 2a10a20
4a20a02 � a2

11

Cy =
a10a11 � 2a01a02
4a20a02 � a2

11

We use a quadratic polynomial instead of a cos4th function because the �tting for the poly-
nomial can be done in closed form.
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Figure 3.12: Pixel intensity pro�le for row 200 from Figure 3.14

Center of vignetting/image spot

For angles nearly parallel to the optical axis the edges of the bundle of rays passing completely
through the lens will usually be bounded by the diameter of the aperture stop. However,
at more oblique angles of incidence the extreme rays of the bundle may be limited by the
front | and rear | lens openings rather than the aperture stop, as shown in Fig. 3.13. This
phenomenon is known as vignetting and leads to a reduction of the image illumination at
increasing distances away from the axis [25]. Figure 3.14 shows sharply de�ned vignetting
in an image of a uniform white �eld.

To determine the center of vignetting we locate the edge of the image spot along the rows
and columns of the image using a standard Laplacian-of-Gaussian edge-�nding technique. A
circle is then �t to the spot's edge to estimate the center of the vignetting.

In virtually all commercial camera systems the size of the lens's image spot (the image

format) is larger than the dimensions of the sensor, speci�cally to avoid signi�cant vignetting
e�ects. Thus this technique can only be used when the lens is removed from the camera
system or in camera systems where the image format is smaller than the sensor size.

Center of focus/defocus

A planar target in front of an ideal lens would produce an image of the target behind the
lens that is also planar. However, with real lenses the image of a plane will not itself lie in
a plane. The di�erence between the position of a plane's real image, illustrated in Fig. 3.15,
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Figure 3.13: Vignetting in a lens (From [25])

Figure 3.14: Image of a uniform white �eld showing sharply de�ned vignetting



48 CHAPTER 3. IMAGE CENTER

lens

in focus image
of target plane

sensor
 planetarget

plane

Figure 3.15: Field curvature in the image produced by a thin lens

and its ideal planar image is known as the \�eld curvature of the lens." In practical terms,
�eld curvature means that the focused distance of the lens varies across the lens's �eld of
view, as demonstrated by Nair [34].

To measure the center of focus (or defocus) we �rst image a target plane that is nearly
perpendicular to the axis of the lens and parallel to the sensor plane in the camera. The
�eld curvature of the lens introduces local defocusing in the image of the target plane. If
the target plane is nearly perpendicular to the optical axis, the focus/defocus pattern will
be radially symmetric. To more accurately measure the amount of defocus we use a target
plane containing a uniform, high spatial frequency texture (e.g. a �ne checkerboard pattern).
A di�erence operator is run across the image to enhance the focus/defocus information con-
tained in the image's high frequency content and to attenuate the e�ect of the low frequency
variations in the image intensity due to factors such as illumination and the cos4th law.
The image center is then determined by �tting a radially symmetric model to the resulting
pattern of focus and defocus.

3.3.3 Multi-image de�nitions

The last class in our image-center taxonomy is based on multi-image techniques. These
techniques rely on the analysis of two or more images taken at di�erent lens settings to
determine an image center. Since the image center is de�ned in terms of the di�erences
between images and not in terms of the properties of the individual images, multi-image
techniques say more about how lens alignment and centration tolerances interact when the
lens parameters are varied than they do about about the image properties covered by single-
image techniques.

Changing any lens parameter will cause changes in the image parameters, including, for
example, the magni�cation, focused distance, and intensity of the image. While any of these
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image properties might be used as the basis of a multi-image de�nition of image center,
image magni�cation has the most apparent usefulness.

Center of expansion for focus, zoom, aperture and color band

Given two images taken at di�erent magni�cations, exactly one position in the scene in both
images will remain in the same place on the image plane. This position is called the \center
of expansion" between the two images. More precisely, given two images I1 and I2 taken at
two magni�cations m1 and m2, and given n reference points P1 . . .Pn in image I1 and the
corresponding points Q1 . . .Qn in image I2, the center of expansion C satis�es the constraint

(C � Pi) = k(C �Qi) 8 i = 1 . . .n

where
k =

m1

m2

:

The relative image plane magni�cation k can be estimated from the change in relative
separation of the points in each image by evaluating

kxij =
qxi � qxj

pxi � pxj
; i > j; j qxi � qxj j > threshold

kyij =
qyi � qyj

pyi � pyj
; i > j; j qyi � qyj j > threshold

k =
�kxij + �kyij

nx + ny

where nx and ny are the number of points in the x and y directions passing the threshold
test. The threshold test is necessary to minimize the e�ects of the measurement noise in
coordinates of the reference points. Typically we use a value that is two to three orders of
magnitude greater than the uncertainty in the measurement of the reference point coordi-
nates. If k is close to unity then the relative positions of the reference points do not move
signi�cantly between the two images and the e�ects of radial lens distortion can be ignored.

To �nd the center of expansion we �rst de�ne the squared error for the center as

exi = (Cx � pxi)� k(Cx � qxi)

eyi = (Cy � pyi)� k(Cy � qyi)

e =
nX

i=1

(e2xi + e2yi)

To �nd the Cx and Cy that minimize the squared error we di�erentiate e with respect to Cx

and Cy and set the results equal to zero, which yields

Cx =

Pn
i=1(kqxi � pxi)

n(k � 1)

Cy =

Pn
i=1(kqyi � pyi)

n(k � 1)
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Normally image magni�cation is changed by varying a lens's zoom, however, magni�cation
can also be changed by varying the focus, aperture, and color band of the lens [56]. Thus,
centers of expansion can be de�ned for all four lens parameters.

Focus of expansion

In what is known as \focus-of-expansion technique" the trajectories of a number of feature
points are tracked across several images taken over a range of zoom settings. The inter-
section of these trajectories yields an image center called the focus of expansion. Since the
intersection of the trajectories for any pair of images will yield a center of expansion, the
focus of expansion is e�ectively just the average center of expansion for zoom over a partic-
ular range of zoom settings. The equations for the focus of expansion are straightforward
generalizations of the equations for the center of expansion.

3.3.4 Experimental results

To illustrate the importance of an accurate image center we calibrated our Fujinon lens and
Photometrics camera using Tsai's camera calibration technique [52]. The non-coplanar data
used in the calibration was obtained using a planar target containing a total of 225 uniformly
spaced reference points (a 15�15 grid) mounted on a precision motion platform.

In Tsai's technique the image center is considered to be a �xed camera parameter generally
determined separately from the calibration of the camera model. Figure 3.16 shows the mean
image-plane error for a range of di�erent image centers used in a Tsai calibration on one
dataset. For an image center equal to the numerical center of the image at [288, 192] (point
1 in Fig. 3.1) the mean and standard deviation of the image-plane error are 0.553 pixels and
0.413 pixels. However, for our camera and lens the image center that yields the minimum
average image-plane error occurs at [258.1, 203.9] (point 9 in Fig. 3.1), where the mean and
standard deviation of the error drop to 0.084 pixels and 0.046 pixels.

To illustrate the variation in the position of image center between di�erent de�nitions we
measured ten di�erent image centers for our automated Fujinon lens.2 The results, drawn to
scale in Fig. 3.1 and listed in Table 3.1, show variations of over 90 pixels in the x direction
and over 40 pixels in the y direction (image size is 576�384 pixels). The range of values
for the center-of-perspective-projection represents the results of several trails with slightly
di�erent orientations of the right-angled cube used to obtain the vanishing points.

2The �rst nine measurements were made with a focused distance of 2.16m, an e�ective focal length of
98mm, and an aperture of f=8:1. The perspective-projection measurements were made with the focused
distance varying from 1.2 { 2.0m, an e�ective focal length of 20mm, and an aperture of f=12:5.
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Table 3.1: Di�erent image centers for the same camera system.

De�nition Cx [pixels] Cy [pixels]
Numerical center of image/digitizer coordinates 288 192
Center of sensor coordinates 290.0 195.5
Center of expansion (zoom) 310.7 182.3
Center of expansion (focus) 324.2 164.8
Center of expansion (aperture) 324.7 191.9
Center of cos4th fallo� 283.1 156.7
Center of vignetting/image spot 273.2 200.1
Center of an autocollimated laser 267.0 204.0
Center of radial lens distortion 258.1 203.9
Center of perspective projection 229-261 165-171
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Figure 3.16: Mean image plane error as a function of image center used during calibration
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3.4 Image center in variable-parameter lenses

Varying the focus and zoom of a lens changes the alignment of the lens components causing
the camera's image centers (and its �eld of view) to shift. As we have shown, knowing
the position of the image center is necessary to accurately model radially symmetric image
properties. Thus, for our camera models to be calibrated at di�erent lens settings we need
to model how the image centers vary with lens parameters.

To see how image centers move in a variable-parameter lens we use the autocollimated laser
approach because of its accuracy, repeatability, and robustness over the full range of lens
settings. For the �rst experiment we started by autocollimating the lens at one lens setting.
We then stepped through the full range of focus and zoom settings while the centroid of the
image of the laser is recorded. The results, plotted in Fig. 3.2, show the laser's image moving
across 3.2 pixels in the x direction and 6.6 pixels in the y direction over the full range of
focus and zoom positions. Two observations are worth noting here. First, the motion of the
image center is clearly rotational as a function of focus, as we would expect from the focus
mechanism for our lens. Second, the motion as a function of zoom is clearly translational,
again as we would expect for our lens.

To determine the mechanical repeatability of the lens we measure the position of the laser as
the focus and zoom parameters are stepped through twice.3 Figures 3.17 and 3.18 show that
the lens has good mechanical repeatability. Figures 3.19 and 3.20 show the motion of the
laser's image as either the focus or zoom parameter is held constant and the lens is stepped
back and forth through the full range of the other parameter. The double curves indicate
that there is an appreciable amount of mechanical hysteresis in the lens system, but this can
be easily overcome by consistently approaching a given lens setting from one direction.

The discontinuities position of the laser's image in Figs. 3.18 and 3.20 are due to play in
mechanical compensation used in the zoom lens. The zoom settings corresponding to the
discontinuity mark the point where the direction of the focus compensation group is reversed.

3The automation for our lens is provided by highly repeatable digital microstepping motors (See Ap-
pendix A), thus any error is due primarily to the mechanical and optical properties of the lens itself.



3.4. IMAGE CENTER IN VARIABLE-PARAMETER LENSES 53

265 266 267 268 269 270 271 272

202

203

204

205

206

207

208

201

X coordinate  [pixels]

Y
 c

o
o

rd
in

a
te

  
[p

ix
e

ls
]

focus motor = 100

2500

5000

Figure 3.17: Mechanical repeatability of shift in laser image due to focus motor
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Figure 3.18: Mechanical repeatability of shift in laser image due to zoom motor
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Figure 3.19: Mechanical hysteresis in shift in laser image due to focus motor
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Figure 3.20: Mechanical hysteresis in shift in laser image due to zoom motor
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3.5 Summary

Calibrating an ideal lens would simply involve modeling a 3D to 2D projection through a
single center of perspective projection. Unfortunately, models for real lenses need to take into
account additional imaging properties that vary radially in the distance from the center of the
image. To capture these properties we need to know their center. As we have demonstrated,
an inaccurate image center can have a signi�cant e�ect on the accuracy of the �nal, calibrated
model.

Still, if lenses could be manufactured perfectly they would have perfect radial symmetry
around one well-de�ned optical axis, which could easily be determined by any one of the 15
methods we have described in this chapter. In practice, however, manufacturing tolerances
produce wide variations in the locations of image centers for di�erent image properties. Thus
di�erent measurements of image centers are not interchangeable.

The image center calibration problem becomes even more complex in variable-parameter
lenses, where manufacturing tolerances can cause image centers to move signi�cantly as the
parameters are changed. However, this motion is usually regular and repeatable and can be
modeled and compensated.

By using the correct image center for each image property we want to model and by calibrat-
ing the image centers over the appropriate ranges of lens parameters, we can signi�cantly
improve the calibration accuracy of our camera models.
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Chapter 4

Modeling and Calibrating

Automated Zoom Lenses

In the previous two chapters we demonstrated that the imaging behavior of automated
lenses is very complex and that it cannot be predicted with traditional abstract models
of the image-formation process. With little a priori knowledge about the underlying lens
mechanisms we proposed that the only way to capture these behaviors is by collecting large
amounts of data and modeling them empirically. This chapter describes our rationale and
approach for empirically building adjustable camera models.

4.1 Fixed- versus variable-parameter lenses

In modeling and calibrating automated zoom lenses our end objective is to capture the net
relationship between the lens control parameters and some aspect of the image-formation
process. As illustrated in Fig. 4.1, we can conceptually subdivide this relationship into two
parts. The �rst part, R1, represents the relationship between the image-formation process
and the hardware con�guration of the lens. The hardware con�guration is speci�ed by the
composition, dimensions, and positions of the optical elements of the lens. The second
part, R2, represents the relationship between the hardware con�guration of the lens and
lens's control parameters (if any). In �xed-parameter camera systems the lens's hardware
con�guration is �xed and we need to consider only R1 for modeling and calibrating the lens.
In variable-parameter camera systems the lens's hardware con�guration is adjustable and
we must consider both R1 and R2.

57
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Figure 4.1: Lens control parameters and the image-formation process

4.1.1 R1 | Image-formation process and the hardware con�gu-

ration

The low-level optics relating a real lens's hardware con�guration to the actual image-formation
process is generally too complex to be expressed in closed-form equations, even for a simple
�xed-parameter camera lens. Lens designers deal with this problem by resorting to simu-
lations of the image-formation process using ray tracing [28]. In ray tracing the paths of
individual light rays are traced as they refract at each optical surface in the lens. With
enough rays the designer can characterize the lens's image-formation process su�ciently to
evaluate the lens's design. While they are explicitly related to the hardware con�guration
of the lens, the equations used in ray tracing cannot be used to build parameterized models
of the imaging properties that we are interested in.

In machine vision we are interested in higher-level aggregate properties of the image-formation
process. These range from simple image properties, such as magni�cation and focused dis-
tance, to more complex image properties, such as perspective projection and image defocus.
In order to have computationally e�cient, closed-form equations for these properties the
models must be based on simpli�cations or abstractions of the actual image-formation pro-
cess. The two most common abstract models are those of the pinhole camera model, used
to explain perspective projection, and the thin-lens camera model, used to explain image
defocus. The price for using an abstract model is a loss in accuracy and a disconnection
between the equations of the model and the hardware con�guration of the lens.

4.1.2 R2 | Hardware con�guration and the control parameters

The relationship between the lens's control parameters and the actual hardware con�guration
of the lens is essentially an arbitrary design choice made by the manufacturer. Typically this
relationship is hidden from the user. Worse still, as shown in Section 3.4, the mechanical
nature of this relationship introduces hysteresis and discontinuities in the lens's imaging
properties, problems that must be dealt with in the adjustable camera model.
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4.1.3 Formulation issues

For �xed-parameter lenses the image-formation process is static, and thus the terms in the
camera model are constants. In variable-parameter lenses the image-formation process is
an adjustable function of the lens control parameters, and thus the terms of the camera
model must also be variable. The question is, \How do the terms of the camera model vary
with the control parameters?" This question is di�cult to answer for two reasons: First,
the two traditional models of the image-formation process | the pinhole camera and the
thin lens | are idealized, high-level abstractions of the real image-formation process, and
the connection between the lens's physical con�guration and the model terms is not direct.
Second, as we've seen, the relationship between the lens's physical con�guration and the
control parameters is complex and typically we have very little a priori knowledge about the
underlying mechanisms involved. We have no good theoretical basis for the relationships.
Since every model term is potentially a function of every lens control parameter, the actual
relationships between the terms of our camera models and the lens control parameters must
be determined empirically.

4.1.4 Calibration issues

Unlike the calibration of �xed-parameter lenses, the calibration of variable-parameter lenses
requires measurements over ranges of lens hardware con�gurations. This raises several chal-
lenges. First, the dimensionality of the data is the same as the number of control parameters
that are to be concurrently modeled. Even if we just took 10 measurements across the
ranges of focus, zoom, and aperture controls, 1000 hardware con�gurations would have to
be calibrated for, compared to just one for a �xed-parameter lens system.

A second challenge are certain imaging situations that cause problems for taking measure-
ments. For example, Figs. 4.2 and 4.3 show the change in size of a checkerboard calibration
target for a 13� zoom lens. As the lens is zoomed in (i.e. the focal length is increased)
the number of feature points in the camera's �eld of view may decrease below the number
necessary to perform an accurate calibration. Conversely, as the lens is zoomed out the
features on the target may become too small and/or crowded to be accurately measured.
As a result, several targets with di�erent scales may be required to cover the full range of
zoom. Taking measurements over wide ranges of focus/defocus or image intensity can also
be problematic.

4.2 Adjustable camera models

The approach we use to model a variable-parameter camera system is simply to characterize
how the parameters of the �xed camera model vary with lens settings. The approach has
three steps:
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Figure 4.2: Checkerboard target at 130mm focal length and 2m range

Figure 4.3: Checkerboard target at 10mm focal length and 2m range
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1. Collection of calibration data for the �xed camera model across a range of lens settings

2. Estimation of the �xed camera model's parameter values at each lens setting

3. Characterization of the relationship between the �xed camera model's parameters and
the lens settings.

4.2.1 Notation

Before we continue we introduce the following notation.

Lens setting: A three tuple containing the control settings for the focus, zoom, and aper-
ture motors on the lens.

S = fmf ;mz;mag

Fixed camera model: A set of parameter values P1; . . . ; Pn that instantiate a set of equa-
tions describing the behavior of a lens at one lens setting.

Mf = fP1; . . . ; Png

Calibration data: A set of measurements D or di taken at one lens setting that can be
used to estimate the �xed camera model parameters at that lens setting.

D = fd0; . . . ; dng

Parameter model: A function with coe�cients a0; . . . ; an that describes the relationship
between a �xed model parameter P and a lens setting S.

gP (S) = genericfunction(S; a0; . . . ; an)

Adjustable camera model: A set of parameter models that describe all the parameter
values for a �xed camera model at lens setting S.

Ma(S) = fgP1(S); . . . ; gPn(S)g

Fixed model error (FME): A measure of how well a �xed camera model Mf explains a
given set of calibration data D for a single lens setting.

FME(Mf ;D) =
nX

i=1

error(Mf ; di)

Adjustable model error (AME): A measure of how well an adjustable camera model
Ma explains several sets of calibration data D1; . . . ;Dn for lens settings S1; . . . ; Sn.

AME(Ma;D1; . . . ;Dn; S1; . . . ; Sn) =
nX

i=1

FME(Ma(Si);Di)
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4.2.2 Collecting calibration data

Operating ranges

The �rst step in building an adjustable camera model is determining the range of lens settings
the model is to be calibrated for. Physical ranges for the lens settings can be expressed quite
directly (e.g. 1000 � mf � 3000 motor units). However, often we would like to express the
operational limits for the model in terms of imaging properties such as focused distance, or
depth of �eld, or e�ective focal length. Unfortunately the models relating the lens's physical
control space to the image properties are often the models we are trying to build. When
we have no models the only approach left is to conduct experimental surveys of the control
space to �nd approximate limits. The choice of a \useful" operating space in terms of the
imaging properties is a subject which we will defer for another thesis.

Sampling strategy

To formulate and calibrate the adjustable camera model we need to take measurements of
the camera system at various points throughout its physical operating space. In sampling
the physical operating space the sampling frequency must be su�ciently high along each
control parameter so that the underlying variations in the parameters of the �xed camera
model can be accurately characterized. Since we start with little or no a priori information
about the relationships between the control parameters and the parameters of the camera
model, the sampling strategy must be determined empirically.

In most cameras the imaging properties are designed to vary smoothly with the lens's con-
trol motors. However, two situations may cause sudden changes (discontinuities) in model
parameters: when the lens has di�erent operating modes it can switch between (e.g. shifting
into and out of macro modes), and when mechanical tolerances allow play in the lens mech-
anisms. To accurately model rapid changes in the imaging properties we need to densely
sample in the control space around them. To avoid over-sampling the entire operating space
we need to have a good idea where the discontinuities are in the lens's operating space.

Generally, mechanical discontinuities in the camera's optical hardware will cause simultane-
ous discontinuities in a broad range of imaging parameters. We can take advantage of this
by using \cheap" measurement techniques to map out the locations of the optical discon-
tinuities in the camera's control space in place of potentially more \expensive," complete
camera calibrations. A cheap measurement technique is the center of an autocollimated
laser described in Section 3.3.2. The autocollimated laser requires only one static target (the
laser) and only one image of the target at each lens setting. Parameter estimation for the
centroid (cx; cy) is also very e�cient and the target is easily measurable across the full range
of zoom and focus for the lens (since the laser acts as a single ray passing through the lens,
focus, zoom and aperture have little e�ect on its pro�le).
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4.2.3 Characterizing variations in �xed model parameters

After having determined the parameters of the �xed camera model for a range of lens settings
we must characterize how they vary with the lens settings.

Formulation of parameter models

If we estimate the parameter values from the calibration data and just store them in lookup
tables we need to make no assumptions about how they vary with the lens settings. However,
if we want to use an algebraic form for the parameter models or interpolate between the
sampled lens settings, we must make some decisions about the underlying variations in the
data. These decisions include which lens controls speci�cally are factors in the variation and
what the order of the variation is. In some cases these decisions may be based on design
objectives, such as requiring a particular parameter to be a constant for all lens settings.
However, in many cases these decisions must be made by examining the data. This approach
is termed adaptive model building by Box [8][9], and trial-and-error by Tarantola [50].

As we've suggested, typically we know neither the relationship between the lens motors and
the hardware con�guration (R1), nor the relationship between the hardware con�guration
and the parameters of the abstract camera model (R2). With no better basis to go on we must
use very generic formulations for the parameter models. Generic functional relationships
between a dependent variable u and an independent variable x can be constructed using
a linear combination of m arbitrary functions of x (for a more complete discussion see
Press[38]). The general form of the generic model is

u(x) =
mX
i=1

aiXi(x) (4:1)

where X1(x); . . . ;Xm(x) are arbitrary (possibly non-linear) functions of x, called a basis.
Possible basis functions include regular polynomials, Chebyshev polynomials, Legendre poly-
nomials, and trigonometric functions.

Given n pairs of u and x we can construct the linear system2
664
u1
...
un

3
775 =

2
664
X1(x1) � � � Xm(x1)

...
...

X1(xn) � � � Xm(xn)

3
775
2
664
a0
...
am

3
775 (4.2)

U = WA

For n = m (and with no two xi's alike) the coe�cients of (4.1) can be solved for directly
using A = W�1U . For n > m the system is over-constrained, and no unique solution exists
for A. The least-squared-error solution can be found using the pseudo-inverse approach
A = (WTW )�1W TU . Note that the pseudo-inverse approach squares the condition number
for the system reducing the precision of the coe�cients by one half[57]. If the system is ill-
conditioned a more robust approach, such as singular value decomposition, may be required
to �nd an accurate solution for A.
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The functional relationships that we are required to model frequently have two independent
variables, the focus motor mf and the zoom motor mz. Empirically we have found that
bivariate polynomials describe these functional relationships well and decided use them as
our basis functions for our parameter models1.

The general formula for a qth order bivariate polynomial is

g(mf ;mz) =
qX

i=0

q�iX
j=0

aijm
i
fm

j
z

The number of coe�cients required by the polynomial is

k =
qX

i=0

q�iX
j=0

1 =
(q + 1)(q + 2)

2

Given n data points (u1; . . . ; un), n � k, the k coe�cients (a00; . . . ; aq0; a0q) for a qth order
bivariate polynomial can be found by solving the n linear equations

2
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(4.3)

Since the number of data points must be greater than or equal to the number of coe�cients
being estimated, the highest order bivariate polynomial that can be �t to a set of n data
points is

qmax =

"p
8n+ 1 � 3

2

#
INT

(4:4)

qmax minimum n

0 0

1 3

2 6

3 10

� � � � � �

where [ ]INT returns the integer part.

The above equations can be generalized for larger numbers of independent variables. Also, in
the most general form the polynomial orders need not be the same for each of the independent
variables.

Having chosen a form for the parameter models we must now determine what orders to use.
The higher the order of the polynomial model the better the polynomial model is able to

1In Appendix D an examination of the calibration data leads us to choose an exponential formulation for

a relative aperture model.
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follow variations in the data. Beyond a certain point though these variations are due to noise
rather than the underlying data. Higher polynomial orders also have more coe�cients and
as a result require more data (i.e. sampled lens settings) to calibrate. If the variation in the
parameter values is due to zero-mean Gaussian noise then a standard Chi-squared test can
be used to determine the best (in the maximum likelihood sense) polynomial order to use
for modeling the data. If the noise is not zero-mean Gaussian, we must use a more empirical
approach to determine the model order.

One such approach is the Minimum Description Length (MDL) principle developed by Ris-
sanen [39]. The competing factors in this approach are the complexity of the �nal adjustable
camera model (i.e. the set of parameter models) and the error between the adjustable cam-
era model and the calibration data. One good metric for the adjustable model's complexity
is the total number of coe�cients required of the parameter models. Note that the error
metric here is the error between between the adjustable camera model and the calibration
data and not the error between the individual parameter models and the parameter values
estimated from the calibration data.

Calibration of parameter models

Having chosen formulations for the parameter models we now want to �nd the best �t
between the adjustable camera model Ma (as represented by the parameter models) and the
calibration data. If each �xed model parameter P is estimated from the calibration data
independently then we can �t the parameter models to the estimated �xed model values one
parameter at a time. If the variation in the parameter values is zero-mean Gaussian, then the
least-squared-error �tting approach described in (4.3) or (4.3) will provide the coe�cients
for the maximum likelihood model for the parameter. If the noise is not normally distributed
we can resort to local M-Estimates [38] to �t the parameter models.

If the �xed model parameters are jointly estimated the calibration problem becomes very
complex. In the most direct approach we would start by replacing the parameters in the
�xed camera model with the formulations for the parameter models2. Then we would have
to estimate the values for all of the coe�cients for all of the parameter models using the
calibration data from all of the lens settings. In �xed models with any complexity this
approach would be computationally prohibitive.

Instead of trying to �t all of the parameter models to the calibration data at the same time,
we can work with the parameters one at a time. In our approach we �t one parameter model
to the estimated �xed model values, set it aside, and then reestimate the remaining �xed
camera model parameters from the calibration data. This process is repeated until all the
parameter models have been �t.

Naturally, as each freely estimated parameter in the �xed camera model is replaced with a
parameter model, the error between the camera model and the calibration data increases.

2If the �xed camera model was not non-linear before this step it would quite likely be non-linear

afterwards.
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For a given set of parameter models the �nal level of error generally depends on the sequence
in which the models are �t to the calibration data.

The most obvious sequencing algorithm is a purely greedy one. In it we conduct a series of
trials by separately �tting the parameter models to the as yet unmodeled parameters. We
then choose the �t that increases the the error between the camera model and the calibration
data (the AME) by the smallest amount. The process is repeated until all the parameter
models have been �t.

In practice this approach works poorly since higher order parameter models tend to get
�t �rst. As the �tting of the parameter models progresses, any noise-induced variation in
the estimated values of the �xed camera model's parameters gets concentrated into the last
parameters to be �t. The lower polynomial order of these parameter models makes for a
poor �t with the data, causing the error between the camera model and the calibration data
to blow up.

A better approach is to �t the parameter models from lowest polynomial order to highest
order, using a greedy algorithm whenever two or more parameter models have the same
polynomial order. We call this algorithm the ascending polynomial order, greedy within
order sequencing.

After the parameter models have been �t to the estimated parameter values we cycle through
the parameters, reestimating and then re�tting the parameter models to improve the �t
between the adjustable camera model and the calibration data. This process continues until
no further improvement is seen in the AME.

The sequencing problem could also be cast as another MDL problem. In this case the
competing factors would be the total number of coe�cients for the parameter models that
have been �t and the error between the camera model and the calibration data. We have
not explored this approach further.

4.3 Summary

The methodology we presented for empirically building camera models for systems with
variable-parameter lenses involves �rst calibrating a conventional �xed camera model at a
number of lens settings spanning the adjustable model's physical operating space. We then
characterize how the parameters of the �xed model vary with individual lens settings by
alternately �tting polynomials to individual model parameters and reestimating the as yet
un�tted parameters using the calibration data. This process is repeated until all of the
�xed camera model's terms have been replaced with polynomial functions of the lens control
parameters. The resulting predictive camera model can interpolate between the original
sampled lens settings to produce | for any lens setting | a set of values for the parameters
in the �xed camera model. As part of our methodology we use a preliminary measurement
survey of the physical operating space to identify regions where rapid changes in imaging
properties may require denser sampling for calibration data.
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Unlike previously developed modeling approaches, ours makes no a priori assumptions about
the dependencies between the parameters of the �xed camera model and the lens settings.
Our approach handles imaging behavior that cannot be explained using the abstract models
of the image-formation process, is general and can be applied to produce | for any image
property | an adjustable camera model from the �xed one and allows any number of inde-
pendent lens control variables to be incorporated. Furthermore, the degree of accuracy and
complexity, and consequently the required calibration e�ort, can be chosen arbitrarily.
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Chapter 5

A Fixed Perspective-Projection

Camera Model

To build an adjustable camera model for an imaging property we are interested in requires a
�xed model of that property. In this chapter and the next we describe the approach we use to
model 3D to 2D perspective-projection. In the following sections we explain the formulation
for the �xed model along with the algorithms and techniques for calibrating it.

5.1 Perspective-projection camera models

Perspective-projection camera models map the coordinates of points in 3D object space into
2D image coordinates. Alternately, an inverted perspective-projection model can be used
to determine the corresponding line-of-sight through the 3D object space based on a 2D
image coordinate. Perspective-projection models are used in viewpoint planning and for
measurement applications, such as stereo.

Many di�erent models have been used for perspective projection [2], [12], [58], [22], [20], [14],
[5]. We use the model described by Tsai [53].

Tsai's camera model consists of 11 parameters: six extrinsic, \exterior-orientation" param-
eters (Rx; Ry; Rz; Tx; Ty; Tz) that describe the position and orientation of the camera's co-
ordinate frame with respect to the world-coordinate frame, and �ve intrinsic, \interior-
orientation" parameters (f;Cx; Cy; sx; �1) that describe the camera's image-formation pro-
cess. All 11 camera parameters are constants estimated from calibration data taken from a
single camera view (i.e. the exterior and interior orientation of the camera is �xed). When-
ever the camera is moved in the world-coordinate system its exterior orientation must be
recomputed while its interior orientation remains unchanged.

69
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Figure 5.1: Fixed perspective-projection camera model geometry

5.2 Formulation of Tsai's model

In Tsai's model, illustrated in Fig. 5.1, the origin of the camera-centered coordinate system
(xc; yc; zc) coincides with the front nodal point of the camera, the zc axis coincides with the
camera's optical axis. The image plane is assumed to be parallel to the (xc; yc) plane and at
a distance f from the origin, where f is the e�ective focal length of the pinhole camera.

The relationship between the position of a point P within the world coordinates (xw; yw; zw)
and the point's image in the camera's frame bu�er (Xf ; Yf ) is de�ned by a sequence of
coordinate transformations. The �rst transformation is a rigid body rotation and translation
from the world-coordinate system (xw; yw; zw) to the camera-centered coordinate system
(xc; yc; zc). This is described by2

64 xc
yc
zc

3
75 = R

2
64 xw
yw
zw

3
75+

2
64 Tx
Ty
Tz

3
75 (5:1)

where

R =

2
64 r1 r2 r3
r4 r5 r6
r7 r8 r9

3
75 (5:2)

is the 3� 3 rotation matrix describing the orientation of the camera in the world-coordinate
system. R can also be expressed as

R = Rot(Rx)Rot(Ry)Rot(Rz) (5:3)

the product of three rotations around the x, y, and z axes of the world-coordinate system.

The second transformation is a perspective projection (using an ideal pinhole-camera model)
of the point in the camera coordinates to the position of its image in undistorted sensor-plane
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Figure 5.2: Transformation from undistorted sensor to distorted frame coordinates

coordinates, (Xu; Yu). This transformation is described by

Xu = f
xc

zc
(5:4)

and
Yu = f

yc

zc
(5:5)

where f is the e�ective focal length of the pinhole camera.

The third transformation (illustrated in Fig. 5.2) is from the undistorted (ideal) position
of the point's image in the sensor plane to the true position of the point's image, (Xd; Yd),
which results from geometric lens distortion. This is described by

Xu = Xd(1 + �1�
2); (5.6)

Yu = Yd(1 + �1�
2) (5.7)

and
� =

q
X2

d + Y 2

d (5:8)

where �1 is the coe�cient of radial lens distortion. While a more complex model describing
both radial and tangential geometric lens distortion could have been used, the accuracy
provided by this model is su�cient to demonstrate the development of the adjustable camera
model.

The �nal transformation is between the true position of the point's image on the sensor plane
and its coordinates in the camera's frame bu�er, (Xf ; Yf ). This is described by

Xf = d�1x Xdsx + Cx (5:9)

and
Yf = d�1y Yd + Cy (5:10)
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where Cx and Cy are the coordinates (in pixels) of the intersection of the zc axis and the
camera's sensor plane; dx and dy are the e�ective center-to-center distances between the
camera's sensor elements in the xc and yc directions; and sx is a scaling factor to compensate
for any uncertainty in the ratio between the number of sensor elements on the CCD and the
number of pixels in the camera's frame bu�er in the x direction.

5.3 Performance metrics

One of the �rst questions we have about any camera model is how accurately it captures the
imaging behavior. This information is necessary both for measuring progress during model
calibration and estimating the performance or accuracy of any application the model is used
in.

Given the measured coordinates of a point in the object space (xw; yw; zw) and the measured
position of the point's image in the frame bu�er (Xf ; Yf ) we can de�ne an error metric for the
model anywhere along the model's chain of coordinate transformations. One obvious error
metric is the di�erence between the position of a point's image we measure and the position
the camera model predicts. If we use the di�erence in positions following the last coordinate
transformation (i.e. after the lens distortion e�ects have been added to the point's projection
through the camera model) we can de�ne the distorted image plane error (DIPE) as

DIPE =
q
(Xf �X 0

f )
2 + (Yf � Y 0

f )
2

where (Xf ; Yf ) is the measured position of the point's image and (X 0

f ; Y
0

f ) is the position of
the point's 3D coordinates (xw; yw; zw) projected through the camera model.

In many applications it is desirable to operate in a virtual, undistorted image plane in the
camera. In fact, Tsai's �xed camera model is designed to allow converting directly from dis-
torted sensor coordinates (Xd; Yd) into undistorted sensor coordinates (Xu; Yu), while going
in the opposite direction requires signi�cantly more computation. We de�ne the undistorted
image plane error (UIPE) as

UIPE =
q
(�Xfu)2 + (�Yfu)2 (5:11)

where

�Xfu = d�1x (Xu2 �Xu1)sx;

�Yfu = d�1y (Yu2 � Yu1):

(Xu2 ; Yu2) are calculated from the measured position of the point's image (Xf ; Yf ) using
equations (5.6), (5.7), and (5.8), while (Xu1 ; Yu1) are calculated from the 3D coordinates of
the point (xw; yw; zw) using (5.1), (5.4), and (5.5). The algorithms that we use to calibrate
the camera model (and that we will describe later on) minimize the sum-of-squared error in
the undistorted image plane for the calibration data.
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In inverse perspective-projection problems it is often helpful to know what level of accuracy
the camera model has in the object space. By projecting an image point (Xf ; Yf ) back
through the camera model we can calculate the closest distance of approach between the
image point's line-of-sight and the point in 3D object space (xw; yw; zw) that was supposed
to have cast the image. This object-space error (OSE) can be calculated as

OSE =
q
(xc �Xut)2 + (yc � Yut)2 + (zc � ft)2

where

t =
xcXu + ycYu + zcf

X2
u + Y 2

u + f2
;

f is the camera's e�ective focal length, (xc; yc; zc) are the 3D coordinates (xw; yw; zw) rotated
and translated into the camera's coordinate frame, and (Xu; Yu) are (Xf ; Yf ) transformed
into undistorted sensor coordinates.

The above three error metrics are measurements of how well the camera model captures
the perspective projection imaging property of the camera system. Another possible error
metric is how well the camera model performs in a particular type of application. Tsai [53]
gives a theoretical upper bound for a 3D measurement error in the case where two calibrated
cameras have been used in a stereo pair. Das [18] describes a set of equations that can be
used to convert uncertainty in the image plane (UIPE) into uncertainty in the range error
for a general stereo con�guration.

5.4 Calibration data

Our estimation of the unknown parameters in the �xed camera model is based on calibration
data consisting of 3D object space coordinates and corresponding 2D image coordinates. For
the experiments described in this thesis we used a planar calibration target mounted on a
translation stage (see Fig. 5.3). The normal of the calibration target is exactly parallel to
the stage's direction of travel. The calibration target itself contains 1/8-inch-diameter, black
reference points precisely spaced out on a regular, 1-inch grid.

For any set of images of the calibration target the relative 3D coordinates (xw; yw; zw) of
the reference points are known from their grid position in the target plane and from the
position of the target plane along the translation stage. The (Xf ; Yf ) positions of the dots
in the image plane are measured to sub-pixel, accuracy using the procedure described in
Appendix C.

The accuracy of the parameter estimation for the �xed camera model depends in part on
the distribution of data points across both the 3D object space and the 2D image plane.
To be able to accurately estimate the f and Tz parameters the calibration data must have
some variation in depth in the camera coordinate frame's z axis. As a general rule the
calibration data should cover a range from the closest to the farthest extent of the volume
that the camera model is to be used for. Also, to accurately measure the radial lens-distortion
coe�cient (�1) and the image center (Cx; Cy) the data's radial positions should vary across
the camera's �eld of view.
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5.5 Model calibration

In the calibration of our �xed camera models we assume that the six exterior orientation
parameters (Rx; Ry; Rz; Tx; Ty; Tz) and �ve interior orientation parameters (f; �1; Cx; Cy; sx)
are all unknown and must estimated from the calibration data. We calibrate the �xed camera
model in two steps. First we use a quick algorithm to obtain approximate estimates for nine
the camera's 11 parameters and then we use iterative, non-linear optimization to re�ne all
11 parameters.

5.5.1 Initial parameter estimation

For our �rst calibration step we use Tsai's [53] non-coplanar calibration algorithm to deter-
mine values for the Tx, Ty, Tz, f , �1, and sx parameters and for the 3�3 rotation matrix
R. Tsai's algorithm begins by setting the radial lens distortion coe�cient (�1) to zero and
then calculating R, Tx, Ty, and sx directly from the calibration data. Next, with �1 still
zero an initial estimate is calculated for f and Tz. Finally, f , Tz, and �1 are re�ned using
an iterative, non-linear optimization.

In Tsai's published algorithm the non-linear optimization of the camera model minimizes
the sum of the error

error = (Yu � Y 0

u)
2

where Yu is the y component of the measured position of the point's image (Xf ; Yf ) trans-
formed into sensor coordinates and Y 0

u is the y component of point's world coordinates
projected through the camera model into the sensor plane. Presumably this was done for
speed and/or to reduce the in
uence of timing jitter noise that can be present in the x com-
ponents of images taken using video cameras[4]. In any event this approach makes almost
no use of the calibration information in the x direction. In our camera systems timing jitter
is either not present or can be averaged out of the image. Thus for our implementation of
Tsai's algorithm, and for the full non-linear optimization approach described next, we make
full use of the calibration data and minimize the sum-of-squared error in both the x and y

directions, i.e.
error = (Xu �X 0

u)
2 + (Yu � Y 0

u)
2 (5:12)

In Tsai's algorithm Cx and Cy are assumed to be known a priori. Three methods for mea-
suring Cx and Cy are are outlined by Lenz and Tsai in [30]. As we have demonstrated in
Chapter 3, the validity of these types of measurement is questionable. However, since the
output of Tsai's algorithm is only serving as an initial estimate for the second step of our
camera calibration a rough estimate for Cx and Cy is su�cient for our purposes. We use the
center of an autocollimated laser (described in Section 3.3.2) to give us a rough estimate.

For closed circuit TV (CCTV) cameras the one-to-one correspondence between the CCD's
rows and the camera's frame bu�er rows allows the value of dy to be obtained directly from
the CCD's speci�cation sheets. The value for dx depends on the relative frequencies of the
clock used to shift data from the CCD onto the video signal and the clock used to sample the



5.5. MODEL CALIBRATION 75

video signal at the frame bu�er. Several methods exist for accurately measuring dx [30][3].
In Tsai's camera model the sx parameter is used to compensate for any error in dx. Since
we include sx in the camera model's non-linear optimization only a rough estimate of dx is
required.

For digital output cameras, such as the Photometrics camera that we use in some of the fol-
lowing experiments, we can obtain exact values for dx and dy directly from the speci�cations
for the camera's CCD.

5.5.2 Full non-linear optimization

In the second step of calibrating the �xed camera model we take the output of Tsai's
non-coplanar algorithm and use iterative non-linear optimization to re�ne the values of all
11 variable model parameters (Rx; Ry;Rz; Tx; Ty; Tz; f; �1; Cx; Cy; sx). To perform the non-
linear optimization we use the IMSL routine DUNLSF which employs a modi�ed Levenberg-
Marquardt algorithm and a �nite-di�erence Jacobian1 to minimize the error function (5.12)
for all points in the calibration data.

Since we cannot easily enforce the orthonormality constraint on the rotation matrix R in
( 5.1) during the non-linear optimization we use ( 5.3) and optimize Rx, Ry, and Rz instead.
The rotation angles Rx, Ry, and Rz can be determined from R using the equations

Rz = arctan
�
r4
r1

�
(5.13)

Ry = arctan

 
r7

r1 cos(Rz) + r4 sin(Rz)

!
(5.14)

Rx = arctan

 
r3 sin(Rz)� r6 cos(Rz)

r5 cos(Rz)� r2 sin(Rz)

!
(5.15)

While the R provided by Tsai's algorithm is not guaranteed to be orthonormal and thus the
calculated rotation angles are not necessarily that good, their accuracy is su�cient for them
to serve a starting point for the non-linear optimization.

5.5.3 Public archive for code

An implementation of the above algorithms, written in the C programming language, can be
found in the Vision List Archive SHAREWARE subdirectory available via anonymous ftp
from FTP.TELEOS.COM. The code requires two non-linear optimization routines that can
be found in either of the IMSL or the NAG commercial software packages.

1The complexity of the �xed camera model makes the direct calculation of the Jacobian computationally

prohibitive.



76 CHAPTER 5. A FIXED PERSPECTIVE-PROJECTION CAMERA MODEL

Figure 5.3: Calibration target and translation stage
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5.6 Recalibrating exterior orientation

Whenever the camera is moved to a new pose the camera's exterior orientation must be re-
computed from calibration data taken at the new position. The camera's interior orientation
remains unchanged.

To compute just the exterior orientation we use a modi�cation of Tsai's algorithm. We
start by using the previously calibrated intrinsic parameters Cx, Cy, and sx to transform
(Xf ; Yf ) from the new calibration data into undistorted sensor coordinates (Xu; Yu). These
coordinates are used in the �rst stage of Tsai's algorithm to determine R (and subsequently
Rx, Ry, and Rz). Given (Xu; Yu) and R we then estimate Tx, Ty, and Tz using the following
approach. Rewriting (5.1), (5.2), (5.4), and (5.5) we obtain two equations,

Xui = f
xwi

r1 + ywi
r2 + zwi

r3 + Tx
xwi

r7 + ywi
r8 + zwi

r9 + Tz

= f
xki + Tx
zki + Tz

(5.16)

and

Yui = f
xwi

r4 + ywi
r5 + zwi

r6 + Ty
xwi

r7 + ywi
r8 + zwi

r9 + Tz

= f
yki + Ty
zki + Tz

; (5.17)

for each point in the new calibration data. Using (5.16) and (5.17) and the new calibration
data we then form an over-determined set of linear equations

2
66666664

f 0 �Xui
...

...
...

0 f �Yui
...

...
...

3
77777775

2
64
Tx
Ty
Tz

3
75 =

2
66666664

Xuizki � fxki
...

Yuizki � fyki
...

3
77777775

which can be solved to obtain estimates for Tx, Ty, and Tz.

Finally, Rx, Ry, Rz, Tx, Ty, and Tz are re�ned using the iterative non-linear optimization
routine described in Section 5.5.2.
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Parameter Value Units
f 60.013 mm
Cx 267.198 pixels
Cy 255.040 pixels
�1 -0.000103 1/mm2

sx 1.079
Rx -0.084 degrees
Ry 0.589 degrees
Rz 0.182 degrees
Tx -521.238 mm
Ty -527.935 mm
Tz 1581.238 mm

mean UIPE 0.064 pixels
standard deviation UIPE 0.033 pixels

maximum UIPE 0.182 pixels
mean OSE 0.042 mm

standard deviation OSE 0.024 mm
maximum OSE 0.135 mm

Table 5.1: Example of a calibrated �xed camera model

5.7 Calibration example

To demonstrate the calibration of a �xed camera model we calibrated the Cosmicar/Panasonic
camera system for the lens setting (mf = 2000, mz = 1000, ma = 1500). The calibration
data for the model came from two images of the calibration target taken with sensor-to-
target ranges of 1.5m (Fig. 5.4) and 2.5m (Fig. 5.5). The absolute position of the origin
for the world-coordinate system was arbitrarily assigned to be in the target plane at 1.5m
range, approximately 520mm up and 520mm to the left of the center of the camera's �eld
of view. The two images provided 186 data points.

Table 5.1 shows the calibrated �xed camera model after the �nal non-linear optimization
step. The small values for the mean UIPE and maximum UIPE indicate that the calibrated
camera model does a good job of capturing the lens's 3D to 2D imaging behavior.

Figures 5.6 and 5.7 show plots of the actual error between the measured positions of the
reference points from the calibration data and the positions predicted by the calibrated
model. In the plots the measured positions are marked with small square boxes. The
vectors from each box point to the position of the point's image predicted by the camera
model. In both �gures the error vectors are magni�ed 100�. The non-random distribution
of the direction vectors indicates limitations in the dimensional accuracy of the target and
translation stage used to obtain the calibration data.



5.7. CALIBRATION EXAMPLE 79

Figure 5.4: Calibration target at 1.5m

Figure 5.5: Calibration target at 2.5m
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Figure 5.6: Residual error for calibration target at 1.5m (magni�ed 100�)

Figure 5.7: Residual error for calibration target at 2.5m (magni�ed 100�)
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5.8 Exterior orientation recalibration example

To test our ability to reacquire the camera's extrinsic parameter models after the camera
has been moved we took one calibration dataset, changed the camera's exterior orientation
(pose), and then took a second dataset. Using the �rst dataset we obtained a fully calibrated
�xed camera model. The intrinsic parameters from this model are then used in a partial
calibration with the second dataset to estimate the camera's new extrinsic parameters. The
second set of data was then used to obtain a fully calibrated �xed camera model. The test
is illustrated graphically in Fig. 5.10.

For the �rst dataset we actually used the data from Section 5.7. Before taking the second
dataset the camera was shifted -100 mm in the camera xw coordinate, -100mm in the camera
yw coordinate and -100mm in the camera zw coordinate, and then rotated until the center
of the �eld of view was located roughly in the middle of the two target plane positions. The
new dataset was obtained from two images of the calibration target taken at ranges of 1.5m
and 2.5m (Figs. 5.8 and 5.9). The world-coordinate frame for the new dataset was the same
as that used for the �rst dataset. The second dataset of data contains 203 data points.

Column 2 of Table 5.2 shows the results for the full calibration on the data from the �rst
pose. Column 4 shows the results for the full calibration for the second pose. The 20%
increase in the mean UIPE for the second set of data is due in part to the lack of 
atness
of the calibration target. With the �rst set of data the target is viewed head on and target

atness is less critical. For the second set the viewing angle is more oblique.

Column 3 of Table 5.2 shows the calibration results when the intrinsic parameters from the
�rst set of data are used in a partial calibration to obtain the extrinsic parameters from the
second set of data. Comparing the results for the second set of data (columns 3 and 4) we see
that the exterior orientation and mean UIPE are virtually the same for the partial and full
calibration. This demonstrates that the algorithm in Section 5.6 can accurately reacquire
the camera's exterior orientation after the camera has been moved. It also demonstrates
that the intrinsic model can be carried between poses.

5.9 Summary

In this chapter we presented the �xed camera model that will be the basis of the adjustable
camera models developed in the next chapter. We have discussed the formulation of the
�xed model along with the algorithms and techniques required to calibrate the it for a
�xed-parameter camera system. We have also presented performance metrics and validation
techniques for the �xed camera model.
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Figure 5.8: Calibration target at 1.5m with camera shifted

Figure 5.9: Calibration target at 2.5m with camera shifted
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Figure 5.10: Experiment in carrying intrinsic parameters to new pose

Parameter Pose 1 Pose 2 Pose 2 Units

full partial full
calibration calibration calibration

f 60.013 60.013 60.058 mm
Cx 267.198 267.198 267.296 pixels
Cy 255.040 255.040 254.626 pixels
�1 -0.000103 -0.000103 -0.000096 1/mm2

sx 1.079 1.079 1.078
Rx -0.084 -2.832 -2.838 degrees
Ry 0.589 -2.042 -2.044 degrees
Rz 0.182 0.303 0.303 degrees
Tx -521.238 -497.003 -497.045 mm
Ty -527.935 -547.358 -547.186 mm
Tz 1581.238 1689.919 1690.989 mm

mean UIPE 0.064 0.077 0.076 pixels
standard deviation UIPE 0.033 0.045 0.040 pixels

maximum UIPE 0.182 0.223 0.202 pixels
mean OSE 0.042 0.050 0.049 mm

standard deviation OSE 0.024 0.031 0.029 mm
maximum OSE 0.135 0.153 0.157 mm

Table 5.2: Calibration results from carrying intrinsic parameters to new pose
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Chapter 6

Adjustable Perspective-Projection

Camera Models

In the previous chapter we described Tsai's 11-parameter perspective-projection camera
model for a �xed camera system. Based on this model we constructed the adjustable camera
model that will be described in this chapter. Two variants of the model are developed. The
�rst is calibrated and tested on both of our camera systems for continuous ranges of focus
and zoom. The second is calibrated and tested on one of the systems for a continuous range
of aperture.

6.1 De�nitions

Before we proceed it will be helpful to rede�ne some notation and introduce some new
notation speci�c to the perspective-projection camera model.

Lens setting: A three-tuple containing the control settings for the focus, zoom, and aper-
ture motors on the lens.

S = fmf ;mz;mag

Calibration data point: A �ve-tuple containing the 3D world coordinates of a point and
its 2D frame-bu�er coordinates.

d = fxw; yw; zw;Xf ; Yfg

Calibration data set: A set of calibration data points, di, taken at one lens setting, in one
world coordinate system, from one �xed camera position and orientation.

D = fd0; . . . ; dng
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Fixed camera model: An 11-tuple containing the intrinsic and extrinsic parameters for
the �xed perspective-projection camera model.

Mf = ff;Cx; Cy; �1; sx; Rx;Ry; Rz; Tx; Ty; Tzg

Adjustable camera model: A set of 11 parameter models that describe the values of the
intrinsic and extrinsic parameters for the �xed perspective-projection camera model at
any given lens setting S.

Ma(S) = fgf (S); gCx(S); gCy(S); g�1(S); gsx (S);

gRx(S); gRy(S); gRz(S); gTx(S); gTy(S); gTz(S)g

Undistorted image plane error (UIPE): The magnitude (in pixels) of the di�erence
between the measured position of a point di in the image and the position predicted
by a camera model M (assuming an undistorted image in both cases).

UIPE(M;D) =
q
(�Xfu)2 + (�Yfu)2

where

�Xfu = d�1x (Xu2 �Xu1)sx;

�Yfu = d�1y (Yu2 � Yu1);

(Xu2 ; Yu2) are calculated from measured position of the point's image (Xf ; Yf ) using
(5.6), (5.7) and (5.8); (Xu1 ; Yu1) are calculated the from the 3D coordinates of the point
(xw; yw; zw) using (5.1), (5.4) and (5.5).

Mean undistorted image plane error (M UIPE): The average value of the UIPE for
model M and all points di in a dataset D.

M UIPE(M;D) =
1

n

nX
i=1

UIPE(M;di)

Sum of the squared undistorted image plane error (SS UIPE): The sum of the square
of the UIPE for model M and all points in a dataset D.

SS UIPE(M;D) =
nX
i=1

[UIPE(M;di)]
2

6.2 Performance metrics

Our objective was to develop a model of the camera's imaging behavior that \holds cali-
bration" across ranges of lens parameters. By \holds calibration" we mean that the model
maintains an acceptable level of accuracy at any lens setting1.

1Since our \ground truth" is limited to the set of calibration data used to develop the model, the best

we can do is have a model that \holds calibration" across the available calibration data.
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Given calibration data for a particular lens setting, the performance of the adjustable camera
model can be expressed using any of the �xed camera model metrics presented in Section 5.3.
To be able to compare di�erent adjustable camera models we require an aggregate measure
of the model's performance for all of the calibrated lens settings.

There are many ways to combine the adjustable camera model's performance statistics at
each calibrated lens setting into a set of statistics for all of the settings. If we are interested
in the total �t between the adjustable modelMa and the calibration datasets Di at each and
every data point, then \per point error" metrics can be used, such as the sum of the sum of
the squared undistorted image plane error,

SSS UIPE =
mX
i=1

SS UIPE(Ma(Si);Di)

A drawback with per point error metrics is that the number of data points in each set
of calibration data Di may vary with lens setting Si so that di�erent lens settings receive
di�erent weightings in the performance metric.

If we are more concerned with the performance of the adjustable model Ma at each lens
setting Si, then we need a metric that is invariant to the number of data points involved, for
example the M UIPE. One useful performance metric of this type is the mean of the mean
undistorted image plane error,

MM UIPE =
1

m

mX
i=1

M UIPE(Ma(Si);Di)

For the following adjustable models we base calibration decisions (i.e. initial �tting sequence
and iterative re�nement) on the SSS UIPE metric because it gives the same weight to every
data point.

For displays of the adjustable model's performance we use the MM UIPE metric because it
has a more direct (and intuitive) relationship with the model's accuracy in a given applica-
tion.

6.3 Fujinon/Photometrics model for focus and zoom

In this section we describe the adjustable perspective-projection camera model we developed
for the Fujinon/Photometrics camera system for ranges of focus and zoom.

6.3.1 Operating range

For the operating range for this model we chose a focus range of 1500 � mf � 4000 motor
units, which corresponds roughly to a focused distance of 1.5m to 2.5m. The correspondence
is not exact as the lens's focused distance is also a�ected by the zoom and aperture controls.
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For the zoom we chose a range of 1500 � mz � 4000 motor units, which corresponds to
focal lengths from approximately 130mm down to 45mm. For the aperture we used a �xed
setting of 380 motor units, which corresponds roughly to f=16.

6.3.2 Sampling strategy

Figures 6.1 and 6.2 show the x and y image coordinates of an autocollimated laser plotted
against the focus and zoom settings for the lens. The plots show a relatively smooth variation
in the laser's position across the full operating space. Thus, for the sampling strategy for this
lens we arbitrarily chose a regular 11�11 sampling of focus and zoom settings for a total of
121 separate settings (S1; . . . ; S121) across the operating space for our camera model. From
(4.4) the largest bivariate polynomial that can be �t to the 121 data points is 14th order
(120 coe�cients).

6.3.3 Calibration data

Calibration data for the adjustable perspective-projection camera model was obtained using
the target described in Section 5.4. At each sample position in the camera operating space
three images of the target were taken at ranges of 1.5m, 2.0m and 2.5m between the target
and the camera's sensor plane. For each set of images the relative 3D coordinates (xw; yw; zw)
of the reference points on the target are known from their grid position in the target plane
and from the position of the target plane along the translation stage. The world coordinate
system's origin was chosen to be in the target plane at the 2.5m range, approximately
340mm up and 320mm to the left of the center of the camera's �eld of view. The (Xf ; Yf )
positions of the dots in each image were measured to sub-pixel accuracy using the procedure
described in Appendix C. For the 121 di�erent lens settings (S1; . . . ; S121) we obtained 121
sets of calibration data (D1; . . . ;D121). Each set contained between 110 and 429 calibration
data points.

6.3.4 Initial �xed camera model calibration

Using the procedure described in Section 5.5 we calibrated �xed camera models (Mf1; . . . ;Mf121)
for each set of calibration data (D1; . . . ;D121). Figures 6.3 through 6.14 show the 11 �xed
model parameters and the M UIPE plotted against the focus and zoom motor positions. De-
spite the apparent noise in many of the model terms, the M UIPE for the lens lies between
0.090 pixels and 0.123 pixels across the full operating space chosen for the camera model.
The MM UIPE over the operating space is 0.099 pixels.
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Figure 6.1: Variation in X coordinate of autocollimated laser's image with focus and zoom
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Figure 6.2: Variation in Y coordinate of autocollimated laser's image with focus and zoom
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Figure 6.3: Fujinon �xed camera model
Rx versus focus and zoom motors
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Figure 6.4: Fujinon �xed camera model
Ry versus focus and zoom motors
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Figure 6.5: Fujinon �xed camera model
Rz versus focus and zoom motors

-328

-327

-326

-325

-324

-323

-322

-328

-327

-326

-325

-324

-323

-322

1500
1750

2000
2250

2500
2750

3000
3250

3500
3750

4000

40003750350032503000275025002250200017501500

T
x 

 [
m

m
]

focus position  [motor units] zoom position  [m
otor units]

Figure 6.6: Fujinon �xed camera model
Tx versus focus and zoom motors
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Figure 6.7: Fujinon �xed camera model
Ty versus focus and zoom motors
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Figure 6.8: Fujinon �xed camera model
Tz versus focus and zoom motors
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Figure 6.9: Fujinon �xed camera model
Cx versus focus and zoom motors
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Figure 6.10: Fujinon �xed camera model
Cy versus focus and zoom motors
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Figure 6.11: Fujinon �xed camera model
f versus focus and zoom motors
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Figure 6.12: Fujinon �xed camera model
�1 versus focus and zoom motors
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Figure 6.13: Fujinon �xed camera model
sx versus focus and zoom motors
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Figure 6.14: Fujinon �xed camera model
M UIPE versus focus and zoom motors
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6.3.5 Formulating the parameter models

For the parameter models we used bivariate polynomial functions. Ideally the noise in
the parameter values would be zero mean Gaussian. Unfortunately the parameter values are
determined using an iterative non-linear optimization on a criterion surface that, in practice,
has many local minima. As a result, the �xed camera models are multi-valued. That is,
for any given set of calibration Di the �xed camera calibration can potentially produce
several di�erent sets of �xed camera model parameters. The set that is found depends
on the noise in the data and on the initial conditions used in the non-linear optimization.
Thus, the variation in the values of the �xed model parameters is not due to Gaussian, zero
mean, constant standard deviation noise. This has two implications for �tting the parameter
models. The �rst is that least-squares error �tting is not a maximum likelihood estimator
for the surface. Even so, since the least-squares error �tting can be accomplished with a
direct non-iterative approach this is our preferred �tting method. Tests using much slower
but more robust surface �tting techniques using local M-Estimates[38] showed no signi�cant
improvement in the performance of the �nal adjustable camera model.

The second implication of the non-Gaussian noise in the parameter values is that we cannot
use a Chi-Squared test to determine how high a polynomial order to use for each parameter
model. Instead we chose the model order based on design requirements for the adjustable
camera model and on empirical results. To make the �nal adjustable model easier to use
the Rx, Ry, Rz, Tx, and Ty parameters were modeled with zero order polynomials. Since
the sx parameter was related to uncertainties in �xed elements in the camera system, it was
also modeled with a zero order polynomial. We tried a wide range of polynomial orders for
the remaining parameter models. The �nal values we used represented an arbitrary tradeo�
between increased complexity and improved performance for the �nal adjustable model. In
section 6.7 we discuss alternate strategies for choosing parameter model orders.

Table 6.1 lists the parameters, the orders chosen for their parameter models and the rationale
for the choice of order. The Fujinon/Photometrics adjustable camera model required a total
of (6� 1) + (1 � 6) + (4� 21) = 96 coe�cients for the parameter models.

6.3.6 Fitting the parameter models

To �t the parameter models to the calibration data we used the ascending order, greedy
within order sequencing described in Section 4.2.3. Table 6.2 shows the sequence in which
the parameter models were �t, along with the MM UIPE, maximum UIPE, and SSS UIPE
statistics for the adjustable camera models at each stage. The �rst entry in the table is for
the original un�tted �xed camera model parameters. Steps 1 to 11 are for the initial surface
�tting sequence. Steps 12 and 13 are for iterative re�nement. The last entry is for the �nal
adjustable camera model.

Figures 6.15 through 6.19 show the �nal adjustable camera model surfaces for the parameters
having second- and �fth-order polynomials. While the �nal f , Tz, and �1 models are all
similar in shape to the original un�tted parameters, the remaining models are all rather
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Parameter Polynomial Reason
Order

sx 0 Changing the camera's image formation process should
not change the relative scale factor between the x and y
axes so we only permit a constant for this parameter.

Rx Ry Rz Tx Ty 0 For ease of use of the adjustable camera model we would
like the position and orientation of the camera's coor-
dinate frame relative to the world coordinate frame to
remain unchanged as the lens parameters are varied so
we only permit constants for these parameters.

Tz 5 Changing the lens's hardware con�guration redistributes
the optical components along the camera's optical axis
shifting the positions of the lens's front and rear nodal
points. This in turn changes the separation of the origins
of the world and camera coordinate systems. Empirically
we �nd that a �fth-order polynomial works well.

f 5 While primarily a function of the zoom actuator, f is
also a function of the focus, aperture and image band.
Empirically we �nd that a �fth-order polynomial works
well.

Cx Cy 5 Changing the lens's hardware con�guration changes the
alignment of the lens's optical components causing the
camera's �eld of view to shift. Empirically we �nd that
a �fth-order polynomial works well.

�1 2 Changing the optical con�guration of the lens changes
the factors causing radial lens distortion. Empirically we
�nd that a second-order polynomial works well.

Table 6.1: Choice of polynomial orders for Fujinon/Photometrics parameter models
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Fitting Parameter Polynomial MM UIPE max UIPE SSS UIPE
Step Order [pixels] [pixels] [pixels2]

un�tted �xed models 0.099457 0.707898 404.268858
1 Rz 0 0.099341 0.719303 403.835679
2 sx 0 0.099357 0.735674 403.760237
3 Ty 0 0.099868 0.732523 408.106362
4 Tx 0 0.101027 0.736067 417.610304
5 Ry 0 0.102501 0.735245 426.124820
6 Rx 0 0.109440 0.770797 467.337702
7 �1 2 0.109468 0.770712 467.920357
8 f 5 0.109449 0.771996 467.958315
9 Tz 5 0.109530 0.772310 469.284819
10 Cy 5 0.109681 0.774827 470.673135
11 Cx 5 0.110829 0.776854 480.119280
12 Cx 5 0.109681 0.774828 470.673046
13 Rx 0 0.107671 0.776371 458.842669

�nal adjustable model 0.107671 0.776371 458.842669

Table 6.2: Fitting sequence for Fujinon/Photometrics parameter models for focus and zoom

di�erent than their un�tted data.

Figure 6.20 shows the �nal M UIPE for the adjustable camera model. The �nal MM UIPE
across the full range of lens settings is 0.108 pixels, which is a 9% increase over the average of
0.099 pixels for the un�tted �xed camera models. Figure 6.21 shows the di�erence between
the M UIPE for the �nal adjustable camera model and the M UIPE for the un�tted �xed
camera models. For mz > 3750 and mf > 2000 the adjustable camera model's M UIPE is
actually better than that of the un�tted �xed camera models.

If we were to calibrate an adjustable camera model for another copy of the same lens the
shapes of the Cx and Cy surfaces would be di�erent due to the di�erent optical misalignments
in each lens. However, the shapes of the f , Tz, and �1 surfaces for both lenses would be
similar, as would the positions of any image properties discontinuities in the lenses' control
space.

6.3.7 Validating the adjustable model

To test the generality of the adjustable camera model and the repeatability of the camera
hardware we used two independent sets of calibration data, Set 1 and Set 2. The two sets
were taken one after the other with the exterior orientation of the camera unchanged between
sets. Each set was used to generate an adjustable camera model. The two models were then
tested on both sets of calibration data.
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Figure 6.15: Fujinon adjustable camera
model f versus focus and zoom motors
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Figure 6.16: Fujinon adjustable camera
model Tz versus focus and zoom motors
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Figure 6.17: Fujinon adjustable camera
model Cx versus focus and zoom motors
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Figure 6.18: Fujinon adjustable camera
model Cy versus focus and zoom motors
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Figure 6.19: Fujinon adjustable camera
model �1 versus focus and zoom motors
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Figure 6.20: Fujinon adjustable camera
model M UIPE versus focus and zoom
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Figure 6.21: Di�erence between the �nal adjustable model M UIPE and the initial �xed
model M UIPE
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Parameter Model Set 1 Set 2 Units

Rx 0.029197 0.028341 degrees
Ry 0.163823 0.164548 degrees
Rz -0.148578 -0.149301 degrees

Tx -326.50 -326.48 mm
Ty -313.22 -313.19 mm

sx 0.998984 0.999096

Table 6.3: Zero-order parameter models for two sets of calibration data from the same pose

Test 1 Test 2 Test 3 Test 4 Units
data used for model Set 1 Set 2 Set 1 Set 2
data used for testing Set 1 Set 2 Set 2 Set 1

MM UIPE 0.107671 0.107606 0.112449 0.112740 pixels
max UIPE 0.776371 0.763927 0.755688 0.785734 pixels
SSS UIPE 458.842669 457.688740 494.742462 503.272373 pixels2

Table 6.4: Performance of two adjustable models on two sets of calibration data from the
same pose

Table 6.3 shows the values of the zero-order parameter models calculated for both sets of
data. Table 6.4 shows the calibration statistics for the two adjustable camera models tested
against both sets of calibration data. The close correspondence between the zero-order
models as well as the nearly identical statistics for the two adjustable models tested against
their own calibration data, indicates that the camera hardware is repeatable. The less than
5% increase in the MM UIPE when the adjustable models calibrated with one set of data
are tested against the alternate set of data indicate that the adjustable models generalize
across di�erent sets of calibration data.

Figures 6.22 through 6.25 show plots of the M UIPE for both camera models tested against
both sets of calibration data. The shapes are not signi�cantly di�erent from one another,
which is yet another indication that the adjustable models are general.
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Figure 6.22: M UIPE for model calibrated
with dataset 1 and tested on dataset 1
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Figure 6.23: M UIPE for model calibrated
with dataset 2 and tested on dataset 2
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Figure 6.24: M UIPE for model calibrated
with dataset 1 and tested on dataset 2
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Figure 6.25: M UIPE for model calibrated
with dataset 2 and tested on dataset 1
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6.4 Recalibrating exterior orientation

Having spent a great deal of time and e�ort to produce an adjustable camera model for
the lens, the next obvious question is how can it be used. As with the �xed camera model,
when the camera system is moved to a new pose the adjustable model's interior orientation
functions (gf ; gCx ; gCy ; gCz ; gsx) will be una�ected

2. However, the exterior orientation of the
camera system (Rx; Ry; Rz; Tx; Ty; Tz) will have to be recomputed for the new pose. By
design our adjustable camera model was built with zero-order functions for the �rst �ve
exterior orientation parameters Rx, Ry, Rz, Tx, and Ty. The only interaction between the
camera's exterior orientation and the lens settings is through the gTz(mf ;mz) function. To
deal with this interaction we de�ne a new function,

g0Tz(mf ;mz) = Tz0 + [ gTz(mf ;mz)� gTz(mf0;mz0) ]

= Tz0 +�Tz(mf ;mz;mf0;mz0)

which separates gTz into a �xed exterior orientation component, Tz0, and a variable interior
orientation component, �Tz. The �xed component, Tz0, is estimated along with the other
�ve exterior orientation constants when the lens is set to a base setting, (mf0;mz0). For more
precise estimates of the new pose additional base settings can be used. The variable compo-
nent, �Tz, accounts for the shift of the lens's principal point along the camera coordinate
frame's z axis, relative to the base lens setting. Figure 6.26 illustrates these relationships in
the 2D xz camera coordinate plane.

We defer a demonstration of the exterior orientation recalibration until we have developed
an adjustable camera model for the Cosmicar/Panasonic system.
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Figure 6.26: Extrinsic (and intrinsic) parameter changes with lens settings

2The adjustable camera model can only be guaranteed to be accurate over the range of depths and camera

parameters that the calibration data covered.
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6.5 Cosmicar/Panasonic model for focus and zoom

In this section we describe the adjustable perspective-projection camera model we developed
for the Cosmicar/Panasonic camera system for ranges of focus and zoom.

6.5.1 Operating range

For the operating range for this model we chose a focus range of 1000 � mf � 3000 motor
units, which corresponds roughly to a focused distance of 1.3m to 2.8m. For the zoom we
chose a range of 500 � mz � 1500 motor units, which corresponds to focal lengths from
approximately 83mm down to 45mm. For the aperture we used a �xed setting of 1500
motor units, which corresponds roughly to f=7.

6.5.2 Sampling strategy

Figures 6.27 and 6.28 show the x and y coordinates for an autocollimated laser plotted against
the focus and zoom motor settings for the lens. In contrast to the plots for the Fujinon lens
(Figs. 6.1 and 6.2), the plots for the Cosmicar lens show a signi�cant discontinuity along the
zoom axis at approximatelymz = 1200. To model this discontinuity properly we would have
had to increase the amount of sampling around this region of the operating space. However,
for this example we consciously ignored the discontinuity and chose a regular 5�5 sampling
of focus and zoom motor settings for a total of 25 separate lens settings (S1; . . . ; S25) across
the camera's operating space. From (4.4) the largest bivariate polynomial that can be �t to
the 25 data points is 5th order (21 coe�cients).

6.5.3 Calibration data

Calibration data for the adjustable perspective-projection camera model was obtained using
the target described in Section 5.4. At each sample position in the camera operating space
two images of the target were taken at ranges of 1.5m and 2.5m between the target and the
camera's sensor plane. For each set of images the relative 3D coordinates (xw; yw; zw) of the
reference points on the target are known from their grid position in the target plane and from
the position of the target plane along the translation stage. The world coordinate system's
origin was chosen to be in the target plane at the 1.5m range, approximately 510mm up and
510mm to the left of the center of the camera's �eld of view. The (Xf ; Yf ) positions of the
dots in each image were measured to sub-pixel accuracy using the procedure described in
Appendix C. For the 25 di�erent lens settings (S1; . . . ; S25) we obtained sets of calibration
data (D1; . . . ;D25). Each set contained between 122 and 272 calibration data points.
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Figure 6.27: Variation in X coordinate of autocollimated laser's image with focus and zoom
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Figure 6.28: Variation in Y coordinate of autocollimated laser's image with focus and zoom
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6.5.4 Initial �xed camera model calibration

Using the procedure described in Section 5.5 we calibrated �xed camera models (Mf1; . . . ;Mf25)
for each set of calibration data (D1; . . . ;D25). Figures 6.29 through 6.40 show the 11 �xed
model parameters and the M UIPE plotted against the focus and zoom motor positions. De-
spite the apparent noise in many of the model terms, the M UIPE for the lens lies between
0.064 pixels and 0.088 pixels across the full operating space chosen for the camera model.
The MM UIPE over the operating space is 0.076 pixels.

6.5.5 Formulating the parameter models

The rationale for the parameter model formulations for the Cosmicar/Panasonic adjustable
camera model was the same as that used for the Fujinon/Photometrics camera. We used
zero-order polynomial models for the sx, Rx, Ry, Rz, Tx, and Ty terms, a second-order
polynomial for the �1 term, and fourth-order polynomials for the f , Cx, Cy, and Tz terms.
The Cosmicar/Panasonic adjustable camera model required a total of (6 � 1) + (1 � 6) +
(4� 15) = 72 coe�cients for the parameter models.

6.5.6 Fitting the parameter models

To �t the parameter models to the calibration data we used the same ascending order, greedy
within order sequencing strategy used for the Fujinon/Photometrics model. Table 6.5 shows
the sequence in which the parameter models were �t, along with the MM UIPE, maximum
UIPE, and SSS UIPE statistics for the adjustable camera models at each stage. The �rst
entry in the table is for the original un�tted �xed camera model parameters. Steps 1 to 11
are for the initial surface �tting sequence. Steps 12, 13, and 14 are for iterative re�nement.
The last entry is for the �nal adjustable camera model.

Figures 6.41 through 6.45 show the �nal adjustable camera model surfaces for the parameters
having second- and fourth- order polynomial models. As with the Fujinon/Photometrics
camera the �nal f , Tz, and �1 parameter models for the Cosmicar/Panasonic camera are all
similar in shape to the original un�tted parameters, while the remaining parameter models
are all rather di�erent than their un�tted data.

Figure 6.46 shows the �nal M UIPE for the adjustable camera model. The �nal MM UIPE
over the full camera operating space is 0.078 pixels, which is a 3% increase over the average of
0.076 pixels for the un�tted �xed camera models. Figure 6.47 shows the di�erence between
the M UIPE for the �nal adjustable camera and the M UIPE for the un�tted �xed camera
models.

Figures 6.43 and 6.44 contain the same discontinuity in the imaging behavior that was found
in the initial survey of the camera model's operating space with the autocollimated laser
(Figs. 6.27 and 6.28).
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Figure 6.29: Cosmicar �xed camera model
Rx versus focus and zoom motors
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Figure 6.30: Cosmicar �xed camera model
Ry versus focus and zoom motors
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Figure 6.31: Cosmicar �xed camera model
Rz versus focus and zoom motors
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Figure 6.32: Cosmicar �xed camera model
Tx versus focus and zoom motors
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Figure 6.33: Cosmicar �xed camera model
Ty versus focus and zoom motors
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Figure 6.34: Cosmicar �xed camera model
Tz versus focus and zoom motors

266

266.5

267

267.5

268

268.5

266

266.5

267

267.5

268

268.5

1000
1500

2000
2500

3000

1500

1250

1000

750

500

C
x 

 [
p

ix
e

ls
]

focus position  [motor units] zoom position  [m
otor units]

Figure 6.35: Cosmicar �xed camera model
Cx versus focus and zoom motors
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Figure 6.36: Cosmicar �xed camera model
Cy versus focus and zoom motors
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Figure 6.37: Cosmicar �xed camera model
f versus focus and zoom motors
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Figure 6.38: Cosmicar �xed camera model
�1 versus focus and zoom motors
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Figure 6.39: Cosmicar �xed camera model
sx versus focus and zoom motors
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Figure 6.40: Cosmicar �xed camera model
M UIPE versus focus and zoom motors
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Fitting Parameter Polynomial MM UIPE max UIPE SSS UIPE
Step Order [pixels] [pixels] [pixels2]

un�tted �xed models 0.075532 0.360894 36.702467
1 Tx 0 0.074999 0.361373 35.808658
2 Ty 0 0.074677 0.358428 35.602254
3 Rz 0 0.074643 0.368658 35.640737
4 Rx 0 0.075338 0.368822 36.268329
5 sx 0 0.076347 0.394985 37.261021
6 Ry 0 0.078349 0.396832 39.428921
7 �1 2 0.078690 0.402834 39.809953
8 Tz 4 0.078729 0.401802 39.880417
9 f 4 0.078897 0.405296 40.011936
10 Cy 4 0.079305 0.408550 40.338094
11 Cx 4 0.079791 0.409626 40.783569
12 Cx 4 0.079305 0.408550 40.338064
13 Rx 0 0.079065 0.403548 40.174146
14 Ry 0 0.078200 0.409401 39.044316

�nal adjustable model 0.078200 0.409401 39.044316

Table 6.5: Fitting sequence for Cosmicar/Panasonic parameter models for focus and zoom

Another interesting feature to note in Fig. 6.45 is �1's transition from negative values to
positive values for zoom motor positions greater than 1400. This corresponds to a change
from barrel distortion to pincushion distortion for the lens.

6.5.7 Validating the adjustable model

To test the generality of the adjustable camera model and the repeatability of the camera
hardware we used two independent sets of calibration data, Set 1 and Set 2. The two sets
were taken one after the other with the exterior orientation of the camera unchanged between
sets. Each set was used to generate an adjustable camera model. The two models are then
tested on both sets of calibration data.

Table 6.6 shows the values of the zero-order parameter models calculated for both sets of
data. Table 6.7 shows the calibration statistics for the two adjustable camera models tested
against both sets of calibration data. The close correspondence between the zero-order
models as well as the the very similar statistics for the two adjustable models tested against
their own calibration data, indicates that the camera hardware is repeatable. The tests also
show a 45% increase in the MM UIPE when the adjustable models calibrated with one set
of data are tested against the alternate set of data. While not as good as the results for
the Fujinon/Photometrics camera the fact that the M UIPE is still in the order of 1/10 of a
pixel is still very reasonable.

Figures 6.48 through 6.51 show plots of the M UIPE for both camera models tested against
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Figure 6.41: Cosmicar adjustable camera
model f versus focus and zoom motors
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Figure 6.42: Cosmicar adjustable camera
model Tz versus focus and zoom motors
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Figure 6.43: Cosmicar adjustable camera
model Cx versus focus and zoom motors
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Figure 6.44: Cosmicar adjustable camera
model Cy versus focus and zoom motors
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Figure 6.45: Cosmicar adjustable camera
model �1 versus focus and zoom motors
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Figure 6.46: Cosmicar adjustable camera
model M UIPE versus focus and zoom
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Figure 6.47: Di�erence between the �nal adjustable model M UIPE and the initial �xed
model M UIPE
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Parameter Model Set 1 Set 2 Units

Rx -0.132285 -0.144780 degrees
Ry 0.594484 0.596439 degrees
Rz 0.179774 0.179382 degrees

Tx -521.114 -521.065 mm
Ty -526.596 -526.239 mm

sx 1.078538 1.078548

Table 6.6: Zero-order parameter models for two sets of calibration data from the same pose

Test 1 Test 2 Test 3 Test 4 Units
data used for model Set 1 Set 2 Set 1 Set 2
data used for testing Set 1 Set 2 Set 2 Set 1

MM UIPE 0.078200 0.076728 0.113314 0.110384 pixels
max UIPE 0.409401 0.377333 0.448178 0.521263 pixels
SSS UIPE 39.044316 37.880414 81.859555 80.331112 pixels2

Table 6.7: Performance of two adjustable models on two sets of calibration data from the
same pose

both sets of calibration data. As with the Fujinon lens, the shapes are not signi�cantly
di�erent from one another which is an indication that the two adjustable models are general.

6.5.8 Exterior orientation recalibration example

To test our ability to reacquire the camera's extrinsic parameter models after the camera
has been moved we took one calibration dataset, changed the camera's exterior orientation
(pose), and then took a second dataset. Using the �rst dataset we obtained a fully calibrated
adjustable camera model. The intrinsic parameter models from this model are then used in a
partial calibration with the second dataset to estimate the camera's new extrinsic parameter
models. The partial calibration was performed �rst with one base setting and then with four
base settings for improved precision. The second set of data was then used to obtain a fully
calibrated adjustable camera model. The test is illustrated graphically in Fig. 6.52.

For the �rst dataset we actually used the data in Set 1 from Section 6.5.7. Before taking
the second dataset the camera was shifted -100mm in the camera xw coordinate, -100 mm
in the camera yw coordinate and -100 mm in the camera zw coordinate, and then rotated
until the center of the �eld of view was located roughly in the middle of the two target plane
positions. The new dataset was obtained from pairs images of the calibration target taken
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Figure 6.48: M UIPE for model calibrated
with dataset 1 and tested on dataset 1
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Figure 6.49: M UIPE for model calibrated
with dataset 2 and tested on dataset 2
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Figure 6.50: M UIPE for model calibrated
with dataset 1 and tested on dataset 2
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Figure 6.51: M UIPE for model calibrated
with dataset 2 and tested on dataset 1



112 CHAPTER 6. ADJUSTABLE PERSPECTIVE-PROJECTION CAMERA MODELS

full
calibration

new extrinsic
parameter models

pose  1

data set 1

intrinsic parameter
models  (camera)

extrinsic parameter
models  (pose)

pose  2

data set 2

intrinsic parameter
models  (camera)

extrinsic parameter
models  (pose)

same

full
calibration

compare

partial
calibration

(1 or 4 base settings)

Figure 6.52: Experiment in carrying intrinsic parameter models to new pose

on the same 5�5 sampling of lens settings used for the �rst dataset.

Column 2 of Table 6.8 shows the results for the full calibration on the data from the �rst
pose. Column 5 shows the results for the full calibration for the second pose. Columns 3 and
4 of Table 5.2 shows the calibration results when the intrinsic parameter models from the
�rst pose are used in a partial calibration with one and with four base settings to obtain the
extrinsic parameter models for the second pose. Comparing the results for the second pose
(columns 3, 4 and 5) we see that the zero-order extrinsic models for the partially calibrated
models are reasonably close to the values for the fully calibrated adjustable model. Using
four base settings reduces the mean M UIPE by 12% and the maximum UIPE by 35%.

Figure 6.53 shows the M UIPE for the full calibration at the �rst pose. Figure 6.54 shows
the M UIPE for the full calibration at the second pose. Figure 6.55 shows the M UIPE for
the partial calibration when only one base setting is used. Figure 6.56 shows the M UIPE
for the partial calibration when four base settings are used.

While the results of this experiment are not as good as those for the �xed camera model
(Section 5.8), a MM UIPE in the order of 1/7 of a pixel and a maximum UIPE for all of
the data points of 0.54 pixels is reasonable and it still indicates that we can reacquire the
camera's extrinsic parameter models after the camera has been moved. It also demonstrates
that the intrinsic parameter models can be carried between poses.
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Figure 6.53: M UIPE for model calibrated
at pose 1
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Figure 6.54: M UIPE for model calibrated
at pose 2
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Figure 6.55: M UIPE for extrinsic recali-
bration using 1 base setting
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Figure 6.56: M UIPE for extrinsic recali-
bration using 4 base settings
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Parameter Pose 1 Pose 2 Pose 2 Pose 2 Units

full partial partial full
calibration calibration calibration calibration

1 base setting 4 base settings

Rx -0.132285 -2.878022 -2.877802 -3.015983 degrees
Ry 0.594484 -2.032490 -2.035238 -2.032272 degrees
Rz 0.179774 0.308359 0.306804 0.304904 degrees

Tx -521.114 -496.822 -496.797 -496.705 mm
Ty -526.596 -546.035 -546.029 -545.951 mm

sx 1.078538 1.078538 1.078538 1.078460
MM UIPE 0.078200 0.147785 0.131852 0.086522 pixels
max UIPE 0.409401 0.735700 0.543040 0.384438 pixels

Table 6.8: Calibration results when carrying intrinsic parameter models to new pose
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6.6 Fujinon/Photometrics model for aperture

In the preceding sections we described two adjustable camera models that held calibration
over ranges of focus and zoom. For these models the aperture settings were �xed. However,
in many situations we might want to be able to vary the lens's aperture. To determine
how strong an in
uence the aperture has on perspective projection we built an adjustable
perspective-projection camera model for the Fujinon/Photometrics camera for a range of
aperture settings.

For our new model the focus was �xed at 2500 motor units and the zoom at 2000 motor
units. The aperture was varied in 50 motor unit steps from 350 to 2000 motor units. The
35 lens settings sampled correspond to a range of relative apertures from f=16:5 to f=2:8.
Calibration data was obtained from images taken with 1.5m, 2.0m and 2.5m between the
camera's sensor and the calibration target. Below the lower setting the aperture was closed
while above the upper setting the target features were too blurry to reliably measure all
three image planes.

Figures 6.57 through 6.67 show plots of the 11 �xed model parameters and the 11 �tted
parameter models versus the aperture motor. Beyond an aperture setting of 1500 motor
units (approximately f=4:7) the measurement error caused by defocus made the �xed camera
calibration unstable.

To model the e�ects of aperture on the 11 parameters in our �xed camera model we used
zero-order polynomials for the sx, Rx, Ry, Rz, Tx, and Ty terms and �rst-order polynomials
for the Tz, f , Cx, Cy, and �1 terms. As with the previous two adjustable camera models,
these model orders were chosen based on design requirements for the model and on empirical
results.

To �t the parameter models to the calibration data we used ascending order, greedy within
order sequencing. Table 6.9 shows the sequence in which the parameter models were �t, along
with the MM UIPE, maximum UIPE, and SSS UIPE statistics for the adjustable camera
models at each stage. The �rst entry in the table is for the original un�tted �xed camera
model parameters. Steps 1 to 11 are for the initial �tting sequence. Steps 12 and 13 are for
iterative re�nement. The last entry is for the �nal adjustable camera model.

Figure 6.68 shows the M UIPE for both the un�tted �xed camera models and the �nal
adjustable model.

The results of this experiment indicate that the aperture has a signi�cant e�ect on the
perspective projection behavior of the camera. The relatively strong dependency of the f ,
�1, and Tz terms on aperture can be attributed to the relationship between the �rst-order
lens aberrations and the diameter of the aperture stop (see Appendix D).

To build an adjustable perspective-projection camera model for ranges of focus, zoom, and
aperture would require collecting calibration data in all three ranges and constructing pa-
rameter models using trivariate polynomials. This experiment shows that for this focus and
zoom position, the order of the variation of the �xed model's parameters with aperture is
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Figure 6.57: Fujinon camera model Rx ver-
sus aperture motor
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Figure 6.58: Fujinon camera model Ry ver-
sus aperture motor
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Figure 6.59: Fujinon camera model Rz ver-
sus aperture motor
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Figure 6.60: Fujinon camera model Tx ver-
sus aperture motor
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Figure 6.61: Fujinon camera model Ty ver-
sus aperture motor
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Figure 6.62: Fujinon camera model Tz ver-
sus aperture motor
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Figure 6.63: Fujinon camera model Cx ver-
sus aperture motor
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Figure 6.64: Fujinon camera model Cy ver-
sus aperture motor
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Figure 6.65: Fujinon camera model f versus
aperture motor
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Figure 6.66: Fujinon camera model �1 ver-
sus aperture motor

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

350 550 750 950 1150 1350 1550 1750
0.9993

0.99935

0.9994

0.99945

0.9995

0.99955

sx
  [

 ]

aperture position  [motor units]

• adjustable model

fixed models

Figure 6.67: Fujinon camera model sx ver-
sus aperture motor
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Figure 6.68: Fujinon camera model
M UIPE versus aperture motor
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Fitting Parameter Polynomial MM UIPE max UIPE SSS UIPE
Step Order [pixels] [pixels] [pixels2]

un�tted �xed models 0.103878 0.305112 64.304930
1 Tx 0 0.102600 0.255010 62.983127
2 Rz 0 0.102462 0.260005 62.873925
3 sx 0 0.102356 0.265299 62.834046
4 Ty 0 0.102315 0.271714 62.836810
5 Ry 0 0.102507 0.271922 63.265362
6 Rx 0 0.104870 0.297507 65.638900
7 Cx 1 0.104910 0.297209 65.692866
8 Tz 1 0.104981 0.301933 65.795436
9 f 1 0.105154 0.307753 65.992409
10 �1 1 0.105234 0.295440 66.349142
11 Cy 1 0.105477 0.311013 66.783483
12 Cy 1 0.105234 0.295440 66.349137
13 Rx 0 0.104503 0.311011 65.671717

�nal adjustable model 0.104503 0.311011 65.671717

Table 6.9: Fitting sequence for Fujinon/Photometrics parameter models for aperture

relatively low. If this variation is uniformly low across the desired focus and zoom motor
ranges, then the sampling strategy for the camera's operating space would require very few
aperture settings. In addition, the extension of the polynomial parameter models to include
aperture could be accomplished using low orders for the aperture variable.

6.7 Discussion

In applying our methodology to produce an adjustable perspective-projection camera model
we touched upon several issues that deserve further discussion.

Sampling strategy

Our objective in building an adjustable camera model is to provide sets of \useful" parameter
values for the �xed camera model for any given lens setting. \Useful" parameter values are
those that yield a �xed camera model that accurately captures the lens's image-formation
process at a given lens setting.

To calibrate the adjustable camera model we need to take measurements of the camera's
imaging properties at di�erent lens settings. The limit for the closeness of these measure-
ments is the control resolution of the lens actuators. However, the number of lens actuators
together with their respective control resolutions typically make an exhaustive sampling of
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the lens's physical operating space impossible. For practicality we subsample the camera's
control space.

To collect the calibration data used in this chapter we used evenly spaced samples in each
of the lens control parameters. We assumed that the chosen sampling rate was su�ciently
high to produce parameter models that accurately interpolated the lens's imaging behavior
between all of the sampled lens settings. To reduce the number of samples required to
calibrate our lens model we could use variable or adaptive sample spacings.

One approach to determine where samples need or do not need to be taken is to use a
dense survey of the operating space (as demonstrated in Section 4.2.2). To further reduce
the number of samples taken the dense surveying could be performed along single control
variables (i.e. taking cuts across the lens's physical operating space). Another approach
would be to look for regions of high curvature in the parameter models produced from
a given set of calibration data. More calibration data could be then taken around these
regions and a new set of parameter models built. The process could be repeated until the
di�erences between successive parameter models fell below some threshold.

Formulation and �tting of parameter models

For the parameter models used in this chapter we used polynomials that were symmetric
in each of the model's independent variables (i.e. had the same polynomial order for each
control motor). From the graphs of the �nal parameter models for f (Figs. 6.15 and 6.41)
and Tz (Figs. 6.16 and 6.42) we can see that the dependence between the model parameters
and the focus and zoom motors is not the same. Permitting di�erent polynomial orders
for each independent variable would allow the overall complexity of the adjustable camera
model to be reduced without signi�cantly degrading the model's performance.

To �t the polynomial models in this chapter we used ascending polynomial order, greedy
within order sequencing followed by an iterative re�nement step. Throughout this process
the �tting and re�tting was performed one parameter model at a time. One possible way
to speed convergence would be to �t or re�t two or more parameter models at the same
time. We tried the extreme of this approach by initially �tting all of the parameter models
at the same time. In this case, however, the resulting adjustable model was poor: it required
numerous iterative re�nements and was trapped in a local minima.

For computational e�ciency we used a least-squared-error technique to �t the parameter
models in this chapter. Unfortunately the data for the models was generated using iterative
non-linear optimization on error surfaces that, in practice, have many local minima. If
we consider di�erent sets of calibration data taken at the same lens settings, the variation
in the generated model parameters is unlikely to have a Gaussian, zero-mean distribution.
Given this, the least-squared-error technique is not necessarily the best approach to �tting
the data. To deal with the non-Gaussian statistics of our data we have experimented with
using robust �tting techniques. For our calibration data, however, this approach did not
signi�cantly change the performance of the �nal adjustable model.
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To build the adjustable models in this chapter we chose the order of the parameter models
�rst and then �t the parameter models to the data. Another approach would be to vary the
model order during the �tting process. One way to look at this is to consider the �tting the
parameter models as imposing a regular structure on the calibration data. Re-estimation
of the �xed camera model's parameter values essentially allows the calibration data to re-
conform to the structure being imposed on it. In this paradigm low-order parameter models
constitute a \sti�" adjustable camera model to which the calibration data may not be able
to conform well (making the adjustable model's error large). Higher-order parameter models
constitute a more \
exible," adjustable camera model to which the calibration data can
conform better (making the adjustable model's error smaller). One way to integrate the
formulation and �tting process then would be to �t a very 
exible adjustable camera model
to the calibration data and then reduce the polynomial orders of the independent variables
in the parameter model one at a time to sti�en the adjustable camera model until a balance
is achieved between the complexity of the adjustable model and the model's performance.
Alternately we could start by �tting a sti� adjustable model and then progressively make
it more 
exible by increasing the polynomial orders of the independent variables in the
parameter models. In both of these approaches the MDL framework could be used to guide
the decision making process.

Calibration across multiple poses

The calibration data we used in this chapter came from images of a single target with the
camera held at a single pose (i.e. the exterior orientation remained constant). For broader
ranges of focus or zoom it may be necessary to use di�erent calibration targets for di�erent
subranges of the camera's operating space. In most cases changing the calibration target will
change the relationship between the world coordinate frame (which the target's reference
points are located in) and the camera's coordinate frame. To accommodate this the extrinsic
parameter models, gRx , gRy , gRz , gTx , gTy , and gTz will have to be calibrated separately for
each subrange of the operating space. At the same time the intrinsic parameter models,
gf , gTz , g�1 , gCx , gCy , and gsx must still be calibrated across the full operating space. This
has signi�cant implications for the �tting of the gTz parameter which has both intrinsic and
extrinsic characteristics. While the value of gTz may change when a di�erent subrange is
calibrated, generally we would like the derivatives of gTz to be continuous as we move from
one subrange to the next.

6.8 Summary

In this chapter we have described the adjustable perspective-projection camera model we
developed based on Tsai's �xed camera model. This model was designed to hold calibration
across continuous ranges of both focus and zoom. We have also described a version of this
model that holds calibration across a continuous range of aperture. Our model was calibrated
and tested on two distinctly di�erent camera systems. Both systems performed across their
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calibrated operating ranges of focus and zoom with an average error of less than 0.14 pixels
between the predicted and measured positions of features in the image plane. Our model
was also calibrated and tested on one system for a continuous range of aperture, where it
achieved similar results.
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Chapter 7

Conclusions

This thesis presents new results for the modeling, calibrating, and control of cameras with
automated zoom lenses. In this thesis we show that traditional approaches cannot capture the
complex relationships between control parameters and imaging processes. Furthermore, we
show that the idealized behavior tradition models assume can lead to signi�cant performance
problems in color imaging and focus ranging. We demonstrated that we could reduce or
eliminate these performance problems by using more complex models and control strategies.
As an outgrowth of our examination of the behavior of real lenses in both �xed- and variable-
parameter systems we have also developed a comprehensive taxonomy for the property of
\image center."

In this thesis we describe a methodology for producing accurate camera models for systems
with variable-parameter lenses. We used this approach to produce an adjustable, perspective-
projection camera model based on Tsai's �xed camera model and calibrated and tested our
model on two di�erent, automated-camera systems. In both cases the calibrated models
operated, across continuous ranges of focus and zoom, with an average error of less than
0.14 pixels between the predicted and the measured positions of features in the image plane.
We have also calibrated and tested our model on one system across a continuous range of
aperture and achieved similar results.

7.1 Contributions

This research makes contributions to computer vision in the theory, modeling, calibration,
and control of variable-parameter camera systems, speci�cally:

� A new methodology for producing adjustable camera models. Our approach involves �rst
calibrating a conventional �xed camera model at a number of lens settings spanning the
adjustable model's physical operating space. We then characterize how the parameters
of the �xed model vary with lens setting by alternately �tting polynomials to individual
model parameters and reestimating the as yet un�tted parameters using the calibration

123
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data. The process is repeated until all of the �xed camera model's terms have been
replaced with polynomial functions of the lens control parameters. The result is a
predictive camera model that can interpolate between the original sampled lens settings
to produce | for any lens setting | a set of values for the parameters in the �xed
camera model. As part of our methodology we use a preliminary measurement survey
of the physical operating space to identify regions where rapid changes in imaging
properties may require denser sampling for calibration data.

Unlike previous modeling approaches, this approach makes no a priori assumptions
about the dependencies between the parameters of the �xed camera model and the
lens settings. Our approach handles imaging behavior that cannot be explained using
the abstract models of the image-formation process.

This modeling approach is general and can be applied to produce | for any image
property | an adjustable camera model from the �xed one. Any number of indepen-
dent lens control variables can be incorporated into the adjustable camera model. The
degree of accuracy and complexity, and the required calibration e�ort can be chosen
arbitrarily.

� A new adjustable perspective-projection camera model. Our adjustable camera model
is based on Tsai's 11-parameter �xed camera model for perspective projection. Five
of the exterior orientation parameters, Rx, Ry, Rz, Tx, and Ty, are modeled with �xed
constants, simplifying the adjustable model's calibration and use. Four of the interior
orientation parameters, f , Cx, Cy, and �1, and the Tz exterior orientation parameter
are modeled with multivariate polynomials whose order can be increased or decreased
to accommodate di�erent rates of dependency between the imaging behavior and lens
settings in di�erent camera systems. The last interior orientation parameter, sx, is
modeled with a constant.

This model can be calibrated for continuous ranges of focus, zoom, and aperture.

� A new taxonomy for the property of \image center." First-order models of lens behav-
ior, such as the pinhole-camera model or the thin-lens model, suggest that the image
center is a single, �xed, intrinsic parameter of the lens. In reality we �nd that there are
many possible de�nitions of image center, and most do not have the same coordinates.
Moreover, image centers move as lens parameters are changed. In this research we have
developed a new and comprehensive taxonomy that includes 15 di�erent de�nitions of
image center and procedures for measuring them.

� A new algorithm for color imaging. In color imaging, the �rst-order model of lens
behavior assumes that magni�cation, focus, and center-of-�eld-of-view are independent
of the color of light being imaged. We show that the second-order e�ect of chromatic
aberration can cause signi�cant defocusing and misregistration between the bands of
a color image. We have developed a new approach, called Active Color Imaging, that
refocuses, re-zooms, and re-centers the lens as the images are taken, thereby reducing
the levels of misregistration by an order of magnitude.

� New theory for focus ranging. In focus ranging the �rst-order model of lens behavior
assumes that the position of the peak in the sharpness criterion function is only a
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function of the lens's focus control. We show theoretically and experimentally how
the second-order e�ect of focus magni�cation can add a target-dependent bias to the
position of the criterion function peak, causing error in the range estimate. By main-
taining a constant image magni�cation during focus ranging by varying both the focus
and zoom motors we can eliminate this bias.

7.2 Directions for future research

This research has, for the �rst time, demonstrated that we can construct accurate camera
models of complex imaging properties for systems with variable-parameter lenses. In de-
veloping and applying our methodology many issues regarding the building of adjustable
camera models were only brie
y addressed. In addition, the new found availability of ad-
justable camera models, such as our perspective-projection model, opens the question of
where they might be applied.

In section 6.7 we outlined several issues on the building of adjustable models that require
further study, including sampling strategies, formulation and �tting of parameter models,
and calibration across multiple poses. While we have produced an adjustable camera model
that is quite usable as is, many of the approaches we used in this thesis could be re�ned to
generate more compact models and reduce the amount of calibration required.

Automated lenses are mechanical devices containing moving parts. Whenever we have mov-
ing parts we must deal with mechanical play and wear. The experiments described in this
thesis were performed in a controlled laboratory environment. If variable-parameter lenses
are to be used outside of the laboratory, attention will have to be given to such factors as
vibration, acceleration, temperature, and wear, that may a�ect the accuracy of our models.

The technology used in variable-parameter lenses is continually evolving. For example,
broadcast quality zoom lenses are now available with focal length ranges of 13.5-740 mm
(55�). While this expanded range in optical parameters increases their potential usefulness,
it also makes calibration of the lens more di�cult. One way to approach this problem would
be to use active or adaptive calibration targets.

More advanced zoom lenses (e.g.[13][32]) use computer-controlled actuators rather than me-
chanical slides and cams to position the optical elements within the lens body. These actu-
ators allow the possibility of modeling directly from the parameters of an abstract camera
model to the positioning of the individual lens elements in the lens body. The advantage
of direct modeling is it alleviates many of the potential mechanical problems, such as hys-
teresis, discontinuity, and wear, that must be dealt with in more conventional lenses. Other
technological advances, such as liquid, graded index, holographic optics, and electro-optics
(e.g.[47]), will likely a�ect the way variable-parameter lenses are modeled and calibrated.

In this thesis we have shown that accurate, predictive camera models can be built for variable-
parameter lenses. These models have great potential as tools in machine vision but we have
only started to consider how they might be applied. One interesting possibility would be to
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use our adjustable, perspective-projection camera model in a stereo system having variable-
parameter lenses. By changing the focus and aperture of the lenses in such a system we
can blur out the scene's foreground and/or background. This capability can be used to
simplify feature matching both by reducing the number of features detected in the scene
and by constraining the range of their allowable disparities. Adjusting the lens's zoom can
also maximize the disparity of matched features, thereby increasing the accuracy of range
measurements.



Appendix A

Calibrated Imaging Lab

The Calibrated Imaging Lab at CMU provides a highly controlled environment for exper-
iments in physics-based machine vision, including color inter-re
ection, surface roughness,
texture analysis, and camera modeling and calibration. The general lab facilities include a
light-tight imaging area and a variety of lighting, positioning and measurement equipment.
This lab also has two high-precision, automated camera systems developed by us speci�cally
for physics-based, machine-vision research. In this appendix we brie
y describe the general
facilities in the lab and the development of the two camera systems with their automated
lenses.

A.1 General facilities

The key feature of the Calibrated Imaging Lab is a 21�10�12-foot \imaging studio" that
can be sealed o� from the computer equipment and other work areas in the room. This
studio presents a controllable environment for acquiring image data to support research in
machine vision.

The studio area has a black ceiling and black carpet; black curtains are also normally used,
to eliminate all re
ections from the walls. This allows direct illumination to be con�gured
and modeled relatively easily. There are also white curtains that can be pulled around the
entire area for studies of di�use illumination (shadows, etc.).

Lighting facilities include a battery of six Macbeth multi-spectral �xtures for di�use lighting
by three di�erent sources (incandescent or cool or warm 
uorescent). For directional lighting,
the lab has several 1000W theater spotlights hung from a grid of pipe work on the ceiling. For
many purposes, free-standing 600W photographers' lights are used with manually operated
dimmers.

The lab features an optical table used for placing objects to be viewed. On this table is a
large (60-inch) travel rail table �tted with an 8-inch diameter, 360-degree Daedal rotation
platform. Test targets and objects of various types are placed on the platform for stationery
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imaging or controlled motion.

For moving the camera, the lab has a full 6-degree-of-freedom (6-DOF) rotation/translation
jig that moves a 12�18-inch platform with high precision (0.001 inch and 0.01 degree res-
olution). Combined with the rail table, the camera-to-object distance can be varied from
about 3 feet to 10 feet (1m to 3m). The rail table, rotation platform, and camera jig are all
controlled by the lab's Sun4 workstation.

The CIL also has calibration equipment and targets. For geometric calibration, the lab has
a pair of Lietz DT20E 20-arc-second surveyor's theodolites; with these, we can determine
the position of any point in the lab with a precision uncertainty of about 0.3mm in each
dimension. For radiometric calibration, the lab has a Gamma Scienti�c spectroradiometer.
This is used as a unit for measuring re
ectance, transmittance, or illumination; and it can
be disassembled for measuring the spectral responsivity properties of a camera. The CIL
has numerous commercial test targets such as gray-scale charts; and has designed many
additional targets such as the CMU Color Chart, which is particularly well-suited for color
cameras used in machine vision.

Taken together, in conjunction with the cameras and lenses describe below, the facilities of
the CIL provide an environment for controlled experimentation in a wide variety of topics
of machine-vision research.

A.2 Cosmicar/Panasonic camera system

The Cosmicar/Panasonic system was our �rst attempt at building a precision camera sys-
tem. Our objective was to take a conventional CCTV camera system and see what type of
performance we could get out of it. The system consists of a Cosmicar CCTV grade zoom
lens mounted on a Panasonic GP-MF702 MOS solid state camera. The video signal from
the camera is digitized to 8-bits/pixel by a Matrox VIP frame grabber in the lab's Sun4
workstation. To select the color band the system uses a seven slot motorized �lter wheel
housing six �lters, including red, green, and blue (Wratten #25, 58, and 47B), 0.3 neutral
density, 0.6 neutral density, and 0.9 neutral density. As CCD cameras are generally sensitive
down well into the infra red, and since all of the band pass �lters that we use are transparent
in the IR regions, we use a total IR block (Schott KG5) mounted directly on the camera
lens.

While the Panasonic video camera is fairly high quality, the camera's images su�er from the
timing jitter and noise problems common to all video cameras [4]. The limited dynamic range
of the camera combined with a �xed sensor gain and exposure time make experimentation
with the full range of aperture positions very di�cult to do. Another shortcoming of the
system results from the low sensitivity of the camera in the blue region as well as the low
light transmission of the blue �lter. This necessitates the use of wide apertures to improve
the SNR of the blue images during color imaging.
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A.3 Fujinon/Photometrics camera system

The Fujinon/Photometrics camera system results from our e�orts to improve on the short-
comings of the Cosmicar/Panasonic camera system. The system consists of a Fujinon ENG
color camera grade zoom lens mounted on a Photometrics Star I scienti�c camera. Images
are digitized to 12-bits/pixel in the camera head by the camera's controller and then trans-
ferred to the lab's host computer over a GPIB interface. To select the color band, the system
has a built in six slot motorized �lter wheel housing �ve �lters, including red, green, blue, 0.3
neutral density, and 0.9 neutral density. The system also has an IR block mounted directly
on the camera lens.

In the Fujinon/Photometrics system the 2/3-inch image format produced by the lens does not
completely cover the camera's sensor array and thus the usable image size for the camera
(338�338 pixels) is smaller than the full sensor size. There were several reasons for this
tradeo�. First, the Photometrics camera has a relatively large back 
ange focal length (on
the order of 45mm, even with a custom machined camera head). This precludes using
commercially available CCTV camera lenses which typically have back 
ange focal lengths
in the range of 10-20 mm. Second, in our experience, to be able to precisely motorize the lens
body we needed a lens where the focal length DOF was rotational. This eliminated almost
all commercially available 35mm format zoom lenses. Of the remaining 35mm format lenses
that we examined none had a su�ciently large enough range of focal lengths or a solid enough
mechanical movement for our purposes. This left us with commercial ENG/EFP lenses and
broadcast quality TV lenses to choose from. For both of these types of lenses the cost of
a 1-inch format lens was prohibitive. In the end, the Fujinon lens that we chose had the
necessary range of focal lengths, three rotational DOFs, robust mechanical movement, and
a 48mm back 
ange focal length.

The Fujinon/Photometrics camera has several major advantages over the Cosmicar/ Pana-
sonic system. The Photometrics camera features direct pixel-by-pixel digitization, virtually
eliminating timing jitter as a source of image noise. In addition, the camera is cooled to
-40�C which further improves the SNR of the image. The 12-bit dynamic range of the Photo-
metrics camera is also a signi�cant improvement over the Panasonic camera's 8-bit dynamic
range. The variable exposure time and sensor gain of the Photometrics camera gives us an
ability to experiment over the full range of aperture values that was unavailable with the
Panasonic camera's �xed exposure time and gain. Finally the Fujinon/Photometrics camera
was also designed with a larger focal length range and with �ner control of the focus and
focal length DOFs compared to the Cosmicar/Panasonic camera.

The Fujinon/Photometrics camera system is not without its limitations, however. To min-
imize the e�ects of variations in the shutter rise and fall times and to improve the SNR of
the images, exposure times typically must be greater than 0.5 seconds for the Photometrics
camera. The longer exposure time combined with the 3-4 seconds required to transfer a
full image from the camera controller to the lab's workstation results in a relatively slow
imaging speed for the camera. In comparison the Cosmicar/Panasonic camera system can
image at a rate of 30 frames/second. At 23�23 �m, the pixel size for the Photometrics
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camera is very large and results in aliasing problems in images with high spatial frequency
content. The 338�338 pixel e�ective image size is also a major drawback. Finally, satu-
ration and blooming in the Photometrics camera has proved to be very di�cult to control.
In conclusion, rather than replace the initial Cosmicar/Panasonic camera system, the Fu-
jinon/Photometrics camera system is used to complement it for high radiometric precision
and geometric stability at a cost of speed and spatial resolution.

A.4 Lens automation

The strength of the CIL's camera systems lies in their high-precision lens automation. Au-
tomation for both the Cosmicar and Fujinon lenses is provided by digital microstepping
motors on each of the focal length, focus, and aperture DOFs. The nature of the microstep-
ping motors ensures precise, drift-free repeatability for all of the lens control parameters,
even across power downs.

For the Cosmicar lens all three motor shafts are connected to the rotational rings on the lens
body by pushrod assemblies similar to the one illustrated in Fig. A.1. This design provides
a 1:1 transfer of the motor's angular position to the lens body with virtually no mechanical
play.

For the Fujinon lens the larger range of motion for the lens's focus distance ring requires
the double pushrod assembly illustrated in Fig. A.2 to minimize the amount of lateral force
exerted on the lens body. The double pushrod design requires an additional motor pivot to
compensate for the translation of the lens's focus element along the optical axis, but has the
advantage over the single pushrod approach of transferring a moment between the motor and
the lens body rather than a force. The small range of motion for the Fujinon lens's zoom ring
combined with the lens's large range of focal lengths necessitates the step-down wire pulley
arrangement illustrated in Fig. A.3 to achieve su�cient resolution of the lens magni�cation.
The tensioned-pulley design provides a 3.5:1 transfer of the motor's angular position to the
angular position of the lens's zoom ring, again with no mechanical play. Finally the aperture
of the Fujinon lens is controlled using the single pushrod assembly illustrated in Fig. A.1.

In most zoom lenses the focal length of the lens is changed by moving groups of lens elements
relative to one another using internal cams and slides. In our system we minimize the e�ects
of this internal source of mechanical play and any external stepper motor hysteresis by always
approaching a desired motor position from one direction.

A.5 Summary of computer-controlled parameters

These two systems - a CCTV system and a scienti�c camera system - give the CIL precise
computer control over the most common camera DOFs. The Cosmicar/Panasonic camera
system and camera jig provide a total of 10 computer-controlled DOFs, listed in Table A.1.
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Table A.1: Controllable parameters for the Cosmicar/Panasonic camera system and jig

parameter operating range control resolution
focus distance 1.0m - 1 3900 steps (110� of travel)
focal length 12.5 - 75mm (6�) 4000 steps (113� of travel)
aperture f=1:8 - closed 2700 steps (76� of travel)
color band none, red, green, blue 7 �lters
x, y, z 24 in, 12 in, 80 in 0.001 inches
�x, �y, �z � 20�, � 20�, � 10� 0.01 degrees

Table A.2: Controllable parameters for the Fujinon/Photometrics camera system and jig

parameter operating range control resolution
focus distance 1.0m - 1 5100 steps (143� of travel)
focal length 10 - 130mm (13�) 11100 steps (89� of travel)
aperture f=1:7 - closed 2700 steps (76� of travel)
color band none, red, green, blue 6 �lters
x, y, z 24 in, 12 in, 80 in 0.001 inches
�x, �y, �z � 20�, � 20�, � 10� 0.01 degrees
exposure time 0.0 - 6553.6 seconds 0.1 seconds
sensor gain 20 or 5 electrons / LSB high/low

The Fujinon/Photometrics camera system and camera jig provide the same 10 DOFs as the
Cosmicar/Panasonic system, plus the ability to set the sensor's gain and exposure time. The
automation for the Fujinon lens also has 30% more control resolution in the focus and focal
length DOFs. The 12 DOFs are summarized in Table A.2.



Appendix B

Chromatic Aberration Measurement

Chromatic aberration in camera lenses causes di�erences in the magni�cation, focus and
centering of images taken in di�erent color bands. In this appendix we describe the procedure
we developed for measuring the level of lateral chromatic aberration in a camera lens using
a single color image of a simple test target. As describe the results for tests on 12 di�erent
camera lenses.

B.1 Measurement approach

To measure the level of lateral chromatic aberration in a camera lens we use the lens to take a
color image of a black-on-white checkerboard test target such as the one shown in Fig. B.1. If
there were no lateral chromatic aberration in the lens the positions of the black-to-white edges
would be the same in each image band. Any di�erence in the position of the edge between
image bands provides a measure of the lens's lateral chromatic aberration perpendicular to
the direction of the edge. By using a relatively dense set of vertical and horizontal black-
to-white edges we can approximate the magnitude of the misregistration caused by lateral
chromatic aberration at any position in the image by using the nearest pairs of horizontal
and vertical edges to obtain the orthogonal components of the misregistration.

To measure lateral chromatic aberration we use one band of the checkerboard's color image
to identify a set of reference edges whose horizontal or vertical positions can accurately and
reliably be measured. We start by using 3�3 Sobel operator and a threshold to produce a
binary edge map from the checkerboard image (Fig. B.2). We then look for suitable reference
edges in the image. Reference edges must meet four criteria: they must be fairly close to
horizontal or vertical; they should have su�cient length so that any image shifting in the
direction parallel to the edge will still leave enough of the edge to measure the cross edge
shifting; they should be sharp enough for the edge position to be accurately calculated; and
all horizontal and vertical reference edges should be chosen far enough apart so that there
is no ambiguity in tracking them between image bands.

To pick out reference edges we test the edge image using a 21�21-pixel test mask. The test
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mask for �nding the horizontal edges used for detecting vertical shifting, shown in Fig. B.3,
contains one edge area and two non edge areas. If the region of the image under the test
mask contains an edge along the mask's edge area, and no edge in the mask's non edge area,
and if the mask does not overlap any previously successful masks, then the section of the
edge under the mask is labeled as a reference edge. Given a reference edge, the image column
(or row) running across the center of the edge is used to measure the position of the edge
to sub-pixel accuracy in the three image bands. Figure B.4 shows the edge image with the
vertical and horizontal test masks superimposed. The tick marks across the edges identify
the columns and rows used to measure the positions of the edges. In this image there are
415 vertical reference edges and 275 horizontal reference edges.

Once we have identi�ed a set of reference edges we next determine their vertical or horizon-
tal positions to sub-pixel accuracy by using a standard Laplacian-of-Gaussian (LoG) edge
localization technique. The LoG technique is nearly optimal for edge localization [15], is
relatively easy to implement and is computationally very e�cient. To locate the position of
a reference edge a 21-pixel segment of the row or column crossing the reference edge is �rst
convolved with the second derivative of a Gaussian convolution kernel1. The location of the
convolution's zero crossing is then interpolated to give the exact position of the edge.

To display the misregistration between image bands we plot the di�erence between the po-
sitions of the edges in the blue and red images and the blue and green images. This can
be done for both the vertical edges and the horizontal edges. If the vertical and horizontal
reference edges are close enough we can approximate the total magnitude of the misregistra-
tion at any point in the image by using the misregistration at nearest pairs of vertical and
horizontal reference edges as the orthogonal components.

Figures B.5 and B.6 show the vertical misregistration between the blue and red and the
blue and green images respectively. Figures B.7 and B.8 show the horizontal misregistra-
tion between the blue and red and the blue and green images respectively. Finally, Fig-
ures B.9 and B.10 show the total misregistration between the blue and red and the blue and
green images respectively.

1We use a standard deviation of 4.0 pixels for the Gaussian convolution kernel.
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Figure B.1: Checkerboard target used for measuring lateral chromatic aberration

Figure B.2: Thresholded edge image of checkerboard
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Figure B.3: Test mask for �nding horizontal reference edges on checkerboard

Figure B.4: Edge image with highlighted reference edges
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Figure B.5: Blue/Red vertical misregistration

Figure B.6: Blue/Green vertical misregistration
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Figure B.7: Blue/Red horizontal misregistration

Figure B.8: Blue/Green horizontal misregistration
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Figure B.9: Blue/Red total misregistration

Figure B.10: Blue/Green total misregistration
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B.2 Examples

To determine the levels of lateral chromatic aberration that could be found in o�-the-shelf
lenses we measured a 12 di�erent �xed and variable focal length lenses, including multiple
copies of the same lens model. The results are summarized in Table B.1 and in Figs. B.11
to B.46.

Lens 1 is a CCTV grade lens typically used with black and white cameras for surveillance
applications. Lenses 2 through 12 are 35mm SLR camera lenses typically used in color
photography and thus have better color correction.

Lenses 1, 2 and 3 are zoom lenses and thus the level of lateral chromatic aberration depends
on the focal length setting. The lenses were measured at representative focal lengths.

lens make and focal length type camera system
1 Kowa 12.5-75 mm at 55mm CCTV zoom General Imaging + Matrox
2 Nikon 35-105 mm at 85mm 35mm SLR zoom General Imaging + Matrox
3 Tokina 35-200 mm at 150 mm 35mm SLR zoom General Imaging + Matrox
4 Nikon 200mm 35mm SLR telephoto General Imaging + Matrox
5 Nikon 50mm AF Nikkor 35mm SLR General Imaging + Matrox
6 Nikon 50mm Nikkor 35mm SLR General Imaging + Matrox
7 Nikon 50mm Nikkor 35mm SLR General Imaging + Matrox
8 Nikon 24mm Nikkor 35mm SLR General Imaging + Matrox
9 Nikon 20mm AF Nikkor 35mm SLR Kodak Megaplus XRC
10 Nikon 28mm Nikkor 35mm SLR Kodak Megaplus XRC
11 Nikon 55mm micro-Nikkor 35mm SLR Kodak Megaplus XRC
12 Elicar 90mm V-HQ 35mm SLR Kodak Megaplus XRC

Table B.1: Description of lenses measured for lateral chromatic aberration
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Figure B.11: Kowa 12.5-75 mm at 55mm - blue/red misregistration

Figure B.12: Kowa 12.5-75 mm at 55mm - blue/green misregistration

Figure B.13: Kowa 12.5-75 mm at 55mm - red/green misregistration
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Figure B.14: Nikon 35-105 mm at 85mm - blue/red misregistration

Figure B.15: Nikon 35-105 mm at 85mm - blue/green misregistration

Figure B.16: Nikon 35-105 mm at 85mm - red/green misregistration
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Figure B.17: Tokina 35-200 mm at 150mm - blue/red misregistration

Figure B.18: Tokina 35-200 mm at 150mm - blue/green misregistration

Figure B.19: Tokina 35-200 mm at 150 mm - red/green misregistration
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Figure B.20: Nikon 200mm - blue/red misregistration

Figure B.21: Nikon 200mm - blue/green misregistration

Figure B.22: Nikon 200 mm - red/green misregistration
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Figure B.23: Nikon 50mm AF Nikkor - blue/red misregistration

Figure B.24: Nikon 50mm AF Nikkor - blue/green misregistration

Figure B.25: Nikon 50mm AF Nikkor - red/green misregistration
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Figure B.26: Nikon 50mm Nikkor - blue/red misregistration

Figure B.27: Nikon 50mm Nikkor - blue/green misregistration

Figure B.28: Nikon 50mm Nikkor - red/green misregistration
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Figure B.29: Nikon 50mm Nikkor - blue/red misregistration

Figure B.30: Nikon 50mm Nikkor - blue/green misregistration

Figure B.31: Nikon 50mm Nikkor - red/green misregistration
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Figure B.32: Nikon 24mm Nikkor - blue/red misregistration

Figure B.33: Nikon 24mm Nikkor - blue/green misregistration

Figure B.34: Nikon 24mm Nikkor - red/green misregistration
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Figure B.35: Nikon 20mm AF Nikkor - blue/red misregistration

Figure B.36: Nikon 20mm AF Nikkor - blue/green misregistration

Figure B.37: Nikon 20mm AF Nikkor - red/green misregistration
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Figure B.38: Nikon 28mm Nikkor - blue/red misregistration

Figure B.39: Nikon 28mm Nikkor - blue/green misregistration

Figure B.40: Nikon 28mm Nikkor - red/green misregistration
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Figure B.41: Nikon 55mm micro-Nikkor - blue/red misregistration

Figure B.42: Nikon 55mm micro-Nikkor - blue/green misregistration

Figure B.43: Nikon 55mm micro-Nikkor - red/green misregistration
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Figure B.44: Elicar 90mm V-HQ - blue/red misregistration

Figure B.45: Elicar 90mm V-HQ - blue/green misregistration

Figure B.46: Elicar 90mm V-HQ - red/green misregistration
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Sub-pixel Centroid Measurement

To obtain calibration data for our perspective-projection camera models we must measure
the positions reference marks, such as the one shown in Fig. C.1, across wide ranges of both
focus and magni�cation1. In this appendix we describe the method that we have developed
to measure the centroids of circular dots to sub-pixel accuracy. This method is also used to
measure the center of an autocollimated laser's image in Section 3.3.2.

Figure C.1: Typical image of a black reference point on a white background

Many methods have been developed for measuring the centroids of dots or point sources
[16][6][31]. To deal with the wide ranges of focus and magni�cation that are somewhat
unique to our application we have developed a new approach.

To �nd the centroid of the dot we �rst �nd the centroids of a series of 1D cross sections of
the dot in the row and column directions (i.e. we use the rows and columns crossing the
dot's image). We then �t lines through the centers found for both directions. We consider
the centroid of the dot to be the intersection of these two lines.

1Even though we may never intend to use our camera when the image is defocused, we may still need to

collect calibration data under these conditions.
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The center of a 1D cross section

To �nd the center of each 1D cross section of the dot we use the zero crossings of the cross
section's �rst and second derivatives. Figures C.2 and C.3 show the two cross sections that
are possible for the image of a dot, along with the �rst and second derivatives of the cross
sections.

In Fig. C.2 the width of the cross section of the dot is comparable to the width of the blur
in the image. In this situation either the zero crossing point of the �rst derivative (the
position of the peak in the data) or the midpoint between the two zero crossings of the
second derivatives (the midpoint between the left and right in
ection points) can be used as
the center of the cross section.

In Fig. C.3 the width of the cross section of the dot is somewhat greater than the width of
the blur in the image. In this situation the zero crossing of the �rst derivative is of no use
(there is no well de�ned peak in the data) and we must rely on the midpoint between the
two zero crossings of the second derivative for the center of the cross section.

To obtain the �rst and second derivatives (F 0(n) and F 00(n)) of the cross section F (n) we
use the convolution properties

(F �G)0 = F � (G0) and

(F �G)00 = F � (G00)

where G is a Gaussian function and G0 and G00 are the �rst and second derivatives of the
Gaussian.

The �rst derivative Gaussian convolution kernel is calculated using

G0(n) =
�np
2��3

exp
�n2

2�2

The second derivative Gaussian convolution kernel is calculated using

G00(n) =
n2 � �2p
2��5

exp
�n2

2�2

For both kernels we use a � of 3 pixels and a kernel length of 31 pixels.

For the data shown in Figs. C.2 and C.3 (i.e. a white dot on a black background) we obtain
the �rst derivative center C1 using

C1 = C1high�to�low

where C1high�to�low
is the simple linear interpolation of the strongest high-to-low zero crossing

of F 0. As a measure of the strength of C1 we use

C1strength
=

jF 00(C1)j
MAX(jF 00j)
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Figure C.2: Intensity pro�les when blur width is greater than width of dot's cross section
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Figure C.3: Intensity pro�les when blur width is less than width of dot's cross section
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To calculate the second derivative center C2 we use

C2 =
C2high�to�low

+ C2low�to�high

2

where C2high�to�low
and C2low�to�high

are the positions of the two second derivative zero cross-
ings. The two second derivative zero crossings are calculated using simple linear interpola-
tions of the strongest high-to-low and low-to-high zero crossings of F 00. As a measure of the
strength of C2 we use

C2strength
=

MIN(
�
�
�F 0(C2high�to�low

)
�
�
� ;

�
�
�F 0(C2low�to�high

)
�
�
�)

MAX(jF 0j)

To determine the center of the cross section we use the weighted sum

C =
C1C1strength

+ C2C2strength

C1strength
+ C2strength

As a measure of the strength of C we use

Cstrength = MAX(jF 0j)

For a black dot on a white background the sense of the high-to-low and low-to-high are
reversed.

The centroid of the 2D dot

To �nd the center of the dot we �rst smooth the dot's image with a 2D Gaussian convolution
kernel to suppress any per-pixel noise. Next we �nd the centroids (and their strengths) for
all cross sections along the rows and columns of the image. We then �nd the maximum
strength for all centroids and discard any centroids whose strength is less than 5% of this.
This e�ectively removes measurements from cross sections that did not contain any part of
the dot. Following this we �t lines to the centroids in each of the row and column directions
using standard weighted least squares error. For each of the data points we use a weight of
(1=Cstrength)2. Finally, we calculate the centroid of the dot by �nding the intersection of the
two �tted lines.

As a quick test of the algorithm we took a series of 9 images of a black dot on a white
background using the Fujinon/Photometrics camera system. The test was repeated for a
total of three di�erent levels of defocus. In all of the tests the standard deviation of the x
and y coordinates of the dot's centroid were well under 0.01 pixels.

The advantages of this algorithm over other approaches are 1) it works for a wide range of
dot sizes without having to be retuned and 2) it works across a wide range of defocus. The
primary disadvantage of this algorithm is its computational cost.



Appendix D

Aperture Calibration

The aperture in a camera system a�ects both the radiometric and the geometric imaging
properties of the system. In this appendix we describe the relative and photometric aperture
models that we have developed for our cameras. We also discuss the development of a depth-
of-�eld model. Finally we discuss why aperture setting may be a necessary parameter in any
geometric camera model.

D.1 Aperture stops

In an ideal pinhole camera exactly one ray of light from a point in object space will pass
through the camera's pinhole to strike the image plane (see Fig. D.1). With a lens however,
light from a point in object space is collected from a solid angle of rays and projected through
the lens onto the image plane, as illustrated in Fig. D.2. The extent of this solid angle of
rays is limited by the lens elements and by the diameter of any diaphragms along the optical
path. The limiting diaphragm is called the aperture stop of the lens.

Typically the aperture stop of a lens (i.e. the iris) is constructed from a set of mechanical
blades whose positions can be varied to change the stop's diameter[21]. The Fujinon and
Cosmicar lenses used in our work both use six blade apertures. Both lenses have 2700 steps
of aperture position.

D.2 Relative and photometric aperture

The relative aperture or f -number of a lens is de�ned as

f -number =
f

a

157
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P
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Figure D.1: Basic pinhole model

P

P’
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P’

narrow aperture

wide aperture

Figure D.2: Basic thin-lens model with wide and narrow apertures
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where f is the e�ective focal length1 and a is the diameter of the clear aperture or entrance
pupil of the lens. The clear aperture of the lens is the image of the aperture stop as it would
be seen from an axial position in front of the lens.

In the ideal case the illumination of the image plane is proportional the area of the clear
aperture of the lens and inversely proportional to the square of the relative aperture. In
practice, inter-re
ections between lens elements reduce the amount of light reaching the
image plane. For more precise radiometric work the photometric aperture, or T-number, is
used. The T-number of a lens is de�ned as

T-number =
f -numberp

t

where t is the lens transmittance. The transmittance is the ratio of the light 
ux leaving the
lens to the light 
ux entering the lens. t can be determined using the expression

t =
1 � r

1 + (K � 1)r

where r is the re
ectance of each lens surface and K is the number of glass/air interfaces in
the lens[24].

If we could measure or estimate values for f and a at di�erent aperture settings then we
could directly formulate and calibrate a relative aperture model. Unfortunately there is
no easy way to measure these quantities short of removing the lens from the camera and
mounting it on an optical test bench as Tarabanis did to measure the optical parameters
of his lens[49]. However, we can measure the relative intensity of light passing through the
lens. If we know the T-number for the light intensity at one aperture setting we can use the
relative light intensity at other aperture settings to calculate their respective T-numbers.

To collect data for our model we took images of an extended light source at 55 aperture
settings from 2700 motor units (fully open) to 0 motor units (fully closed). For each aperture
setting the exposure time was adjusted so that the maximum pixel value in the image was
just below full scale (4095 greyscales for our 12-bit camera). The ratio of the the pixel
values to the exposure time provides a measure of the light 
ux striking the image sensor in
greyscales/second.

Figure D.3 shows a plot of the light 
ux versus aperture setting for the Fujinon/ Photometrics
camera. At settings below 200 a pair of cuto� blades engage to completely close o� the
aperture. At settings above 2500 the blades comprising the aperture have completely cleared
away from the bundle of light passing through the lens. At this point a �xed diaphragm
located elsewhere along the lens acts as the lens' aperture stop. To bypass any transient
e�ects we chose the operating region for our aperture models to be from 300 to 2450 motor
units.

The Fujinon lens speci�cations list the maximum relative aperture (f -number) as 1.7 for
focal lengths from 10-100 mm. Between 100 and 130mm the maximum f -number rises to

1The e�ective focal length here is not equivalent to the focal length of the pinhole camera model used in

Chapters 4, 5 and 6.
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Figure D.3: Light 
ux versus aperture motor

2.1 indicating that within this range the limiting diaphragm for the lens is likely the outer
diameter of one of the lens groups rather than the main �xed diaphragm. For our calibration
data the zoom was set to 2000 motor units, which corresponds to a focal length of slightly
under 100mm. The maximum T-number for the Fujinon lens is speci�ed as 1.9. The
transmittance for the lens is thus

t =
�
1:7

1:9

�2

= 0:80 = 80%

To model the photometric aperture we use the fact that the intensity of the light 
ux I
at any aperture setting ma is inversely proportional to the square of the T-number at that
setting, i.e.

I(ma) = c

 
1

T-number(ma)

!2

where c is a constant of proportionality. In addition, from the calibration data (Fig. D.3) we
know the level of the light 
ux, IMAX , that corresponds to the maximum T-number of 1.9.
Together this gives us the relationship

T-number(ma) = 1:9

s
IMAX
I(ma)

:

Since the transmittance t of the lens is constant with aperture, the f -number relationship is

f -number(ma) = 1:7

s
IMAX
I(ma)

:
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To determine a formulation for I(ma) we replot the calibration data on a logarithmic scale.
The plot, shown in Fig. D.4, is roughly linear between 300 and 2450 motor units indicating
that I(ma) can be represented by an exponential model. The model that we use is

I(ma) = 2(c1+c2ma+c3m
2
a
):

To determine the calibration constants c1, c2, and c3 we �t a least squares error quadratic
curve to the base 2 logarithm of the 
ux data between settings 300 and 2450. Figures D.6
and D.7 show plots of the �nal f -number and T-number models.

Figure D.5 shows the percentage error between the original 
ux data and the calibrated 
ux
model. The maximum error is 3.4%. The deviations between the model and the data are
repeatable across di�erent experiments indicating that they are a property of the aperture
mechanism. For a more accurate 
ux model we could store the calibration data in a lookup
table and use interpolation to determine values for intermediate settings.

The models we built for relative and photometric aperture were calibrated for one focus and
zoom setting. Typically zoom lenses are designed to try and hold the f -number constant as
the focal length of the lens is varied. However, this may not be practical in all cases. In this
event the f -number and T-number models may also have to be calibrated across focus and
zoom.

D.3 Depth of �eld

In camera systems the �nite resolution of the image sensor leads to a zone around the plane
of best focus of the camera called the depth of �eld. Light rays originating from any point
within this zone project to the same pixel in the camera and thus are indistinguishable from
one another. Consider the thin lens shown in Fig. D.8. In this diagram the cone of rays from
point P converge at point P 0 behind the lens. The point P is related to the point P 0 by the
thin-lens formula

1

P
+

1

P 0
=

1

f

where f is the focal length of the thin lens. The extent of the cone of rays is limited by the
diameter of the thin lens, a. If the minimum resolvable dimension on the sensor is b we can
determine a point PN whose cone of rays will form a circle of diameter b on a sensor placed
at position P 0. Similarly we can determine a point PF whose cone of rays will also form a
circle of diameter b on the sensor at P 0. Given the geometry of the situation the cone of rays
from any point lying between PN and PF will fall completely within the circle of diameter
b and thus be unresolvable from any other point in the interval. The unresolvable region
between PN and PF is the depth of �eld for the camera for the focused distance P .

To determine the depth of �eld we use the similar triangles in Fig. D.8 to give us

a

b
=

P 0

N

P 0

N
� P 0

=
P 0

F

P 0
� P 0

F

:
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Figure D.4: Light 
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Figure D.6: f -number versus aperture motor
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P P’PF PN
P’F P’N b a

sensor

Figure D.8: Depth of �eld for a thin lens

Applying the thin-lens law to P 0, P 0

N
, and P 0

F
to obtain P , PN , and PF and solving for PN

and PF we have

PN =
afP

af � bf + bP

and

PF =
afP

af + bf � bP
:

The extent of the depth of �eld is therefor

D = PF � PN =
2abPf(P � f)

a2f2 � b2f2 � b2P 2 + 2b2fP
:

To calculate the depth of �eld for the camera we need to know the values of f , a, b, and
P . Values for b can be determined from the dimensions of the pixels in the camera's sensor.
Values for P can be determined from a focused distance model and the range-from-focus
techniques discussed in Chapter 2. The ratio f=a can be determined using the relative
aperture model developed above. However, to obtain the value for either a or f that would
be necessary to determine the actual depth of �eld it is likely that the lens would have to be
removed from the camera and measured on an optical bench.

D.4 Lens aberrations and aperture

The aperture of the lens has a direct in
uence on the radiometric imaging properties of the
camera system as well as on the geometric imaging properties related to the camera's depth
of �eld. However, the aperture also has more subtle but potentially signi�cant e�ects on
other imaging properties.

The quality of the image formed by a lens is determined by the contributions of the lens
aberrations to the image. These contributions depend on the position of the aperture stop
along the optical axis and on the aperture's radius. The relationships between the radius
r of the aperture and the primary lens aberrations are shown in Table D.1. Changing the
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Table D.1: E�ect of aperture radius on primary lens aberrations (From [43])

primary aberration relation to aperture radius
spherical (longitudinal) r2

spherical (transverse) r3

coma r2

length of astigmatic lines r
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Figure D.9: Image magni�cation versus aperture motor

aperture changes the contributions of the lens aberrations, which in turn can alter image
properties such as image magni�cation. Figure D.9 shows the change in image plane mag-
ni�cation for the Fujinon/Photometrics camera as a function of the aperture motor2. The
subtle dependency between the lens aberrations and the aperture means that precise geo-
metric camera models need to be calibrated across aperture setting, as we demonstrated in
Section 6.6.

2For this experiment the relative magni�cationwas measured using the target in Fig. 5.5 and the algorithm

in Section 3.3.3.
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